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Abstract. The recently proposed physical projector approach to the quantization of gauge-
invariant systems is applied to theU(1) Chern–Simons theory in 2 + 1 dimensions as one of
the simplest examples of a topological quantum field theory. The physical projector is explicitly
demonstrated to be capable of effecting the required projection from the initially infinite number
of degrees of freedom to the finite set of gauge-invariant physical states whose properties are
determined by the topology of the underlying manifold.

1. Introduction

The general gauge invariance principle pervades all of modern physics at the turn of this century,
as a most basic conceptual principle unifying the fields of algebra, topology and geometry with
those of the fundamental interactions of the elementary quantum excitations in the natural
Universe. This fascinating convergence of ideas is probably nowhere better demonstrated
than within the recent developments of M-theory as the prime (and sole) candidate for a
fundamental unification†. Given the many mathematics and physics riches hidden deep within
the structures and dynamics of gauge-invariant theories, a thorough understanding sets a
genuine challenge to the methods developed over the years in order to address such issues. For
example, a manifest realization of the gauge invariance principle requires the presence among
the degrees of freedom of such systems of redundant variables whose dynamics is specified
through arbitrary functions characterizing the gauge freedom inherent to the description. This
situation leads to specific problems, especially when quantizing such theories, since some
gauge-fixing procedure has to be applied in order to effectively remove in a consistent way
the contributions of gauge-variant states to physical observables. More often than not, such
gauge fixings suffer Gribov problems [2–4], which must be properly addressed if one is to
correctly account for the quantum dynamics of gauge-invariant systems, certainly within a
non-perturbative framework. Among gauge theories, topological quantum field theories [5, 6]
provide the most extreme example of such a situation, since their infinite number of degrees
of freedom includes only afinite number of gauge-invariant physical states, whose properties
are in addition solely determined by the topology of the underlying manifold irrespective of
its geometry.

† For a recent discussion, see for example [1].
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In a recent development [7], a new approach to the quantization of gauge theories was
proposed, which avoids from the outset any gauge fixing and thus any issue of the eventuality
of some Gribov problem [8]. This approach is directly set within the necessary framework
of Dirac’s quantization of constrained systems†. No extension—with its cortège of ghosts
and ghosts for ghosts—or reduction of the original set of degrees of freedom is required, as
is the case for all approaches which necessarily implement some gauge-fixing procedure with
its inherent risks of Gribov problems [4]. Nonetheless, the correct representation of the true
quantum dynamics of the system is achieved in this new approach, which uses in an essential
way the projection operator [7] onto the subspace of gauge-invariant physical states of a given
gauge-invariant system. Some of the advantages of the physical projector approach have
already been explored and demonstrated in a few simple quantum mechanical gauge-invariant
systems [9, 10]. In this paper, we wish to illustrate how the same methods are capable of
also dealing with the intricacies of topological quantum field theories which, even though
possessing only a finite set of physical states, require an infinite number of degrees of freedom
and states for their formulation. Indeed, it will be shown that the physical projector precisely
effects this required projection.

The specific case addressed here as one of the simplest possibilities, is that of the pure
Chern–Simons theory in 2 + 1 dimensions with gauge groupU(1). Moreover, the discussion
will be made explicit when the topology of the underlying manifold is that of6 × R, where
6 is a two-dimensional compact Riemann surface taken to be a 2-torusT2 for most of our
considerations. This system has been studied from quite a few different points of view
[6, 11–15]. The consistency of the physical projector approach will be demonstrated by again
deriving some of the same results through an explicit resolution of the gauge-invariant quantum
dynamics within this specific framework which avoids any gauge fixing whatsoever and thus
also any Gribov problem.

The outline of the discussion is as follows. Section 2 briefly elaborates on the classical
constrained Hamiltonian formulation for Chern–Simons theories with an arbitrary gauge
symmetry group. These considerations are then particularized in section 3 to theU(1) case
restricted to theR×T2 topology, enabling a straightforward Fourier mode analysis of the then
discrete infinite set of degrees of freedom. In section 4, the Dirac quantization of the system
is developed, leading in section 5 to the construction of the physical projector. These results
are then explicitly used in section 6 in order to identify the spectrum of physical states in the
U(1) theory and to determine their coherent-state wavefunction representations. Finally, the
discussion ends with conclusions, while some necessary details are included in an appendix
in order not to detract from the main line of arguments.

2. Classical Chern–Simons theories

LetG be a compact simple Lie group of Hermitian generatorsT a (a = 1, 2, . . . ,dimG) and
structure constantsf abc such that [T a, T b] = if abcT c. In terms of the gauge connectionAaµ,
the action for the associated(2 + 1)-dimensional Chern–Simons theory is then given by

S = Nk
∫
R×6

dx0 dx1 dx2 εµνρ
[
Aaµ∂νA

a
ρ − 1

3f
abcAaµA

b
νA

c
ρ

]
= 1

2Nk

∫
R×6

dx0 dx1 dx2 εµνρ
[
AaµF

a
νρ + 1

3f
abcAaµA

b
νA

c
ρ

]
(1)

† For a detailed discussion and references to the original literature, see for example [4].
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whereFaµν = ∂µAaν − ∂νAaµ − f abcAbµAcν , ε012 = +1, whileNk is a normalization factor (the
usual gauge coupling constantg has been absorbed into the gauge connectionAaµ).

As is well known, under small gauge transformations (i.e. continuously connected to
the identity transformation), the Lagrangian density in (1) remains invariant up to a surface
term. For large gauge transformations, however (i.e. those transformations in a homotopy
class different from that of the identity transformation), the action (1) changes by a term
proportional to a topological invariant, namely the winding number of the gauge transformation.
Consequently, at the quantum level, invariance under large gauge transformations requires that
the normalization factorNk be quantized, which is the reason for its notation. Note also
that no metric structure whatsoever is necessary for the definition of the action (1). Indices
µ, ν, ρ = 0, 1, 2 are neither raised nor lowered, while the notation, though reminiscent of a
Minkowski signature metric, is in fact related to the specific topologyR×6 considered for the
three-dimensional manifold. The choice of the real lineR for the time evolution coordinatex0

is made for the purpose of canonical quantization hereafter, while any other type of compact
topology for the three-dimensional manifold may be obtained fromR×6 through gluing and
twisting [6].

Hence, equation (1) defines a topological field theory, namely a field theory whose gauge
freedom is so large that its gauge-invariant configurations characterize solely the topology of
the underlying manifold, irrespective of its geometry [5]. In the present case, this is made
obvious in terms of the associated equations of motion,

εµνρF aνρ = 0 ⇔ Faµν = 0. (2)

Indeed, the modular space of flat gauge connections on the base manifold is finite dimensional
and purely topological in its characterization through holonomies around the non-contractible
cycles in the manifold. Quantization of the Chern–Simons theory thus defines the quantization
of a system whose configuration space—which actually coincides with its phase space—is this
modular space of flat connections.

The action (1) being of first-order form in time derivatives of fields, is already in the
Hamiltonian form necessary for canonical quantization [4, 16]. Indeed, we explicitly have,

S =
∫

d3xµ
[
∂0A

a
i Nkε

ijAaj +Aa0Nkε
ijF aij − ∂i

(
Nkε

ijAajA
a
0

)]
(3)

where εij (i, j = 1, 2) is the two-dimensional antisymmetric symbol withε12 = +1.
Consequently, the actual phase space of the system consists of the field componentsAai
(i = 1, 2) which form a pair of conjugate variables with symplectic structure defined by
the brackets

{Aa1(Ex, x0), Ab2(Ey, x0)} = 1

2Nk
δab δ(2)(Ex − Ey). (4)

In addition, the first-class Hamiltonian of the system vanishes identically,H = 0, as befits any
system invariant under local coordinate reparametrizations, while finally the time components
Aa0 of the gauge connection are the Lagrange multipliers for the first-class constraints

φa = −2NkF
a
12 = −2Nk

[
∂1A

a
2 − ∂2A

a
1 − f abcAb1Ac2

]
(5)

whose algebra of brackets is that of the gauge groupG,

{φa(Ex, x0), φb(Ey, x0)} = f abcφc(Ex, x0)δ(2)(Ex − Ey). (6)
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That these constraints are indeed the local generators of small gauge transformations is
confirmed through their infinitesimal action on the phase space variablesAai ,

δθA
a
i (Ex, x0) =

{
Aai (Ex, x0),

∫
6

d2Ey θb(Ey, x0)φb(Ey, x0)

}
= ∂iθa(Ex, x0) + f abcθb(Ex, x0)Aci (Ex, x0) (7)

while the Lagrange multipliersAa0 must vary according to

δθA
a
0(Ex, x0) = ∂0θ

a(Ex, x0) + f abcθb(Ex, x0)Ac0(Ex, x0). (8)

The constraintsφa also coincide, up to surface terms, with the Noether charge densities related
to the gauge symmetry. Indeed, the Noether currentsγ aµ = εµνρNkf abcAbνAcρ are conserved
for solutions to the equations of motion,∂µγ aµ = 0, so that the associated charges read

Qa =
∫
6

d2Ex γ a(µ=0) =
∫
6

d2Ex [φa + 2Nk(∂1A
a
2 − ∂2A

a
1)
]
. (9)

The above conclusions based on the first-order action (3) are of course confirmed through
an explicit application of Dirac’s algorithm for the construction of the Hamiltonian formulation
of constrained systems [4]. In particular, the brackets (4) then correspond to Dirac brackets
after second-class constraints have been solved for, while (3) then describes the so-called
‘fundamental Hamiltonian formulation’ [4] of any dynamical system. Incidentally, note that
surface terms which appear in (3) and (9) are irrelevant for such a Hamiltonian construction,
which is in essence a local construct on the manifold6. In any case, they do not contribute
when6 is without boundaries.

3. TheU (1) theory on the torus

Henceforth, we shall restrict the discussion to the gauge groupG = U(1) and to the compact
Riemann manifold6 being the two-dimensional torusT2. This choice is made for the specific
purpose of demonstrating that the physical projector approach is capable of properly quantizing
such theories in the simplest of cases, leaving more general choices to be explored elsewhere
with the same techniques. In particular, the torus mode expansions to be specified presently may
be extended to Riemann surfaces6 of arbitrary genus through the use of Abelian differentials
and the Krichever–Novikov operator formalism [11–13, 17–19]. The extension to non-Abelian
gauge groupsG requires further techniques of coherent-states not included in the present
discussion.

Given the manifold6 = T2, let us consider the local trivialization of this topology
associated with a choice of basis of its first homology group with cyclesa and b.
Correspondingly, the choice of local coordinatesx1 andx2 is such that 0< x1, x2 < 1.
Related to this trivialization ofT2, fields overT2 may be Fourier expanded, so that the total
number of degrees of freedom, though infinite, is represented in terms of adiscreteset of
modes overT2. Explicitly, in a real parametrization we have (from here on, any dependency
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onx0 is left implicit while the single indexa = 1 forG = U(1) is not displayed),

Ai(Ex) =
+∞∑
n1=0

+∞∑
n2=0

A++
i (n1, n2) cos 2πn1x

1 cos 2πn2x
2

+
+∞∑
n1=0

+∞∑
n2=1

A+−
i (n1, n2) cos 2πn1x

1 sin 2πn2x
2

+
+∞∑
n1=1

+∞∑
n2=0

A−+
i (n1, n2) sin 2πn1x

1 cos 2πn2x
2

+
+∞∑
n1=1

+∞∑
n2=1

A−−i (n1, n2) sin 2πn1x
1 sin 2πn2x

2. (10)

Let us emphasize that such expansions do not include the terms which would be associated with
the following modes:A+−

i (n1, 0),A
−+
i (0, n2),A

−−
i (n1, 0)andA−−i (0, n2) (n1, n2 = 1, 2, . . .).

Similar mode expansions—to which the remark just made also applies—are obtained for any
quantity defined overT2. For theU(1) generatorφ(Ex), one has (for a non-Abelian groupG,
terms bilinear in theA±±i (n1, n2)modes also contribute, which is the reason for our restriction
toG = U(1))

φ++(n1, n2) = −4πNk
[
+n1A

−+
2 (n1, n2)− n2A

+−
1 (n1, n2)

]
φ+−(n1, n2) = −4πNk

[
+n1A

−−
2 (n1, n2) + n2A

++
1 (n1, n2)

]
φ−+(n1, n2) = −4πNk

[−n1A
++
2 (n1, n2)− n2A

−−
1 (n1, n2)

]
φ−−(n1, n2) = −4πNk

[−n1A
+−
2 (n1, n2) + n2A

−+
1 (n1, n2)

]
.

(11)

Since {φ(Ex), φ(Ey)} = 0 in the AbelianU(1) case, all the modesφ±±(n1, n2) have
vanishing brackets with one another, while those for the phase space modesA±±i (n1, n2)

are given by

{A±±1 (n1, n2), A
±±
2 (m1, m2)} = 2

Nk
f ±±(n1, n2) δn1,m1 δn2,m2 (12)

where

f ++(n1, n2) = 1

(1 + δn1,0)(1 + δn2,0)
f +−(n1, n2) = 1− δn2,0

1 + δn1,0

f −+(n1, n2) = 1− δn1,0

1 + δn2,0
f −−(n1, n2) = (1− δn1,0)(1− δn2,0).

(13)

In order to understand how small and large gauge transformations—the latter not being
generated by the first-class constraintφ(Ex)—are represented in terms of these mode expansions,
let us consider the general gauge transformation of the fieldAµ, namelyA′µ = Aµ + ∂µθ ,

associated with theU(1) local phase transformationU(Ex, x0) = eiθ(Ex,x0). A point central to
our discussion is that the arbitrary functionθ(Ex, x0) may always be expressed as

θ(Ex, x0) = θ0(Ex, x0) + 2πk1x
1 + 2πk2x

2 (14)

whereθ0(Ex, x0) is an arbitraryperiodic function, i.e. ascalar fieldonT2, while k1 andk2 are
arbitrary positive or negative integers. Indeed, any small gauge transformation is defined in
terms of some functionθ0(Ex, x0) with (k1, k2) = (0, 0), while any large gauge transformation
θ(Ex, x0)may always be brought to the above general form with some specific functionθ0(Ex, x0),
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the integersk1 andk2 then labelling theU(1) holonomies of the gauge transformation around
the chosena andb homology cycles inT2. Any gauge transformation thus falls into such a
(k1, k2) homotopy class of the gauge group overT2. In terms of the mode expansion of the
gauge parameter function (14), the non-zero modesA±±i (n1, n2) (n1 6= 0 orn2 6= 0, or both)
are transformed according to

1A++
1 (n1, n2) = +2πn1θ

−+
0 (n1, n2) 1A++

2 (n1, n2) = +2πn2θ
+−
0 (n1, n2)

1A+−
1 (n1, n2) = +2πn1θ

−−
0 (n1, n2) 1A+−

2 (n1, n2) = −2πn2θ
++
0 (n1, n2)

1A−+
1 (n1, n2) = −2πn1θ

++
0 (n1, n2) 1A−+

2 (n1, n2) = +2πn2θ
−−
0 (n1, n2)

1A−−1 (n1, n2) = −2πn1θ
+−
0 (n1, n2) 1A−−2 (n1, n2) = −2πn2θ

−+
0 (n1, n2)

(15)

where1A±±i (n1, n2) =
(
A±±i (n1, n2)

)′ − A±±i (n1, n2), while the zero modesA++
i (0, 0)

transform as

1A++
1 (0, 0) = 2πk1 1A++

2 (0, 0) = 2πk2. (16)

These different expressions thus nicely establish that small gauge transformations—
generated by the first-class constraintφ(Ex)—modify only the non-zero modes and that large
gauge transformations only affect the zero modes of the gauge connectionAi(Ex). Turning
the argument around, one thus concludes that the system factorizes into two types of degrees
of freedom, namely the non-zero modesA±±i (n1, n2) (n1 6= 0 or n2 6= 0) directly related to
small gauge transformations only, and the zero modesA++

i (0, 0) directly related to large gauge
transformations only. Moreover, the above expressions also show that it is always possible
to set half the non-zero modes to zero by an appropriate small gauge transformation, namely
either thei = 1 or thei = 2 component for each of the modesA±±i (n1, n2) (the choice of
which of these two components is set to zero is left open for the modes with bothn1 6= 0 and
n2 6= 0, but not for those modes for which eithern1 = 0 orn2 = 0). Consequently, invariance
under small gauge transformations implies that the physical content of the system actually
reduces to that of its zero-mode sectorA++

i (0, 0) (i = 1, 2) only, while the physical content
of its non-zero-mode sector is gauge equivalent to the trivial solutionAi(Ex) = 0 to the flat
connection conditionF12(Ex) = 0 associated with the vanishing holonomies(k1, k2) = (0, 0).
That the physics of these systems lies entirely in their zero-mode sector remains valid at the
quantum level as well, as is shown hereafter (in fact, this conclusion also extends to Riemann
surfaces6 of arbitrary genus and for any choice of non-Abelian gauge groupG [6, 11–14]).

An identical separation also applies to the modes of the gauge parameter functionθ(Ex, x0).
As shown above, the term(2πk1x

1 + 2πk2x
2) corresponds to large gauge transformations

only, while the contributionθ0(Ex, x0) induces small transformations only, whose zero mode
θ++

0 (0, 0) in fact completely decouples. Indeed, the latter mode corresponds to a global phase
transformation, which for the real degrees of freedomAµ(Ex, x0) stands for no transformation
at all. In other words, in as far as the small gauge parameter functionθ0(Ex, x0) is concerned,
one could say that its zero modeθ++

0 (0, 0) has, in fact, been traded for the(k1, k2) parameters
characterizing the holonomies of a large gauge transformation. The zero modeθ++

0 (0, 0) for
small gauge parameter functionsθ0(Ex) thus does not enter our considerations in any way
whatsoever, and may always be set to zero. Finally, let us simply point out also that the range
of each of the non-zero modesθ±±0 (n1, n2) is the entire real line, running from−∞ to +∞ (as
opposed to the zero modeθ++

0 (0, 0) which would have taken its values in the interval [0, 2π ],
for example, had it contributed to gauge symmetries of the system).

It may appear that by using the mode expansion (10), the gauge fieldAi(Ex) is assumed
to obey periodic boundary conditions, which would amount to implicitly assuming thatAi(Ex)
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defines a vector field overT2 rather than a possibly non-trivial section of aU(1) bundle over
T2, the latter case being associated with the possibility of twisted boundary conditions for the
componentsAi(Ex) [20]. However, the local trivialization ofT2 in terms of the coordinates
0 < x1, x2 < 1 does not define a complete covering ofT2, which requires at least 22 = 4
different overlapping coordinate charts. Moving from one chart to another implies that the
gauge connectionAi(Ex) also changes by gauge transformations which include large ones
associated with twisted boundary conditions. Therefore, by explicitly considering in our
definition of the gauge-invariant system large gauge transformations, the possibility of twisted
boundary conditions is implicitly included, and the above Fourier mode decomposition of the
phase space degrees of freedomAi(Ex) is fully warranted.

4. Dirac quantization

Given the above mode decompositions of the Hamiltonian formulation of the system
defined over the torusT2, its canonical quantization proceeds straightforwardly through
the correspondence principle according to which brackets now correspond to commutation
relations being set equal to the value of the bracket multiplied by i¯h. Thus, given (12), the
fundamental quantum operators are the modesÂ±±i (n1, n2) such that

[Â±±1 (n1, n2), Â
±±
2 (m1, m2)] = 2ih̄

Nk
f ±±(n1, n2)δn1,m1δn2,m2 (17)

with in particular for the zero modes,[
Â++

1 (0, 0), Â
++
2 (0, 0)

] = i
h̄

2Nk
. (18)

Henceforth, we shall thus assume explicitly thatNk > 0, with the understanding that the case
whenNk < 0 is then obtained simply by interchanging the roles of the coordinatesx1 andx2.

It is already possible at this stage to determine the number of quantum physical states [6].
Indeed, the relations (15) and (16) show that the actual gauge-invariant phase space degrees of
freedom are the zero modesA++

i (0, 0)defined up to integer shifts by 2π , while half the non-zero
modes—either thei = 1 or 2 component, depending on the given mode—may be set to zero
through small gauge transformations. In other words, the actual physical phase space of the
system is a two-dimensional torus of volume(2π)2, an instance of a phase space which is not a
cotangent bundle as is usually the case but rather a compact manifold. The quantization of the
system thus amounts to quantizing this two-dimensional torus, with the commutation relation
(18) in whichh̄′ = h̄/(2Nk) plays the role of an effective Planck constant. In particular, the
total number of physical states is thus given by the volume(2π)2 of phase space divided by
that of each quantum cell(2πh̄′) for the degree of freedomA++

1 (0, 0), namely

(2π)2

2π(h̄/2Nk)
= 4π

h̄
Nk. (19)

Consequently, the normalization factorNk ought to be quantized with a valueNk = h̄k/(4π)
to be associated withk physical states (k = 1, 2, . . .). Precisely this quantization condition
is established hereafter by considering large gauge transformations of the system; this
quantization condition will then be specified further later on when considering modular
transformations of the underlying torusT2, which then require the integerk to also be even.

The above commutation relations for the modesÂ±±i (n1, n2) define an infinite tensor
product of Heisenberg algebras. In order to set up a coherent-state representation through
creation and annihilation operators associated with this Heisenberg algebra, it is necessary to
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introduce a complex structure on the initial base manifoldT2. The necessity of introducing
some further structure on6 beyond the purely topological one is also unavoidable in all other
quantization frameworks for Chern–Simons theories [6]. In fact, all other approaches require
a metric structure on6, while it is then shown that the quantized system nevertheless depends
only on the complex structure (or conformal class of the metric) on6, with the space of gauge-
invariant physical states providing a projective representation of the modular group of6 due
to a quantum conformal anomaly [6]. This is how close a topological quantum field theory
may come to being purely topological. In the present approach, the necessity of introducing a
complex structure over6 is thus seen to arise from a coherent-state quantization of the system,
while, in contradistinction to other quantization methods, it is also gratifying to realize that
no further structure is required within this approach since the quantized system should in any
case turn out to be independent of any such additional structure.

On T2, a complex structure is characterized through a complex parameterτ = τ1 + iτ2

whose imaginary part is strictly positive (τ2 > 0), with the modular groupPSL(2,Z) of
transformations generated by(T : τ → τ + 1) and (S : τ → −1/τ) defining the classes
of inequivalent complex structures under global diffeomorphisms inT2. Associated with the
complex parametrization,

z = x1 + τx2 dz dz̄ = |dx1 + τ dx2|2 = (dx1)2 + 2τ1 dx1 dx2 + |τ |2(dx2)2 (20)

the gauge connection 1-form reads as

A = dx1A1 + dx2A2 = dzAz + dz̄ Az̄ (21)

with

Az = i

2τ2
[τ̄A1− A2] Az̄ = − i

2τ2
[τA1− A2]. (22)

Given the choice of complex structure parametrized byτ , the annihilation operators for
the quantized system are defined by

α±±(n1, n2) =
√

1

f ±±(n1, n2)

Nk

4h̄τ2

[−iτ Â±±1 (n1, n2) + iÂ±±2 (n1, n2)
]

(23)

with the creation operatorsα±±†
(n1, n2)simply defined as the adjoint operators ofα±±(n1, n2).

One has

[α±±(n1, n2), α
±±†

(m1, m2)] = δn1,m1δn2,m2 (24)

while the annihilation (respectively, creation) operators clearly correspond, up to
normalization, to the Fourier modes ofÂz̄(z, z̄) (respectively,Âz(z, z̄)).

An overcomplete basis of the space of quantum states is then provided by the coherent
states,

|z±±(n1, n2)〉 =
∏
±±

∏
n1,n2

e−
1
2 |z±±(n1,n2)|2 ez

±±(n1,n2)α
±±†

(n1,n2) |0〉 (25)

with the following representation of the unit operator:

1l =
∫ ∏
±±

∏
n1,n2

dz±±(n1, n2) ∧ dz̄±±(n1, n2)

π
|z±±(n1, n2)〉〈z±±(n1, n2)| (26)

wherez±±(n1, n2)are arbitrary complex variables and|0〉 is the usual Fock vacuum normalized
such that〈0|0〉 = 1. In particular, the gauge-invariant physical states of the system are
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those superpositions of these coherent states which are annihilated by the first-class operator
φ̂(Ex), namely by all the modeŝφ±±(n1, n2). However, this restriction does not yet account
for invariance under large gauge transformations, which are not generated by the constraint
operatorφ̂(Ex), a further specification to be addressed in the next section.

One could now proceed and solve for the physical-state conditionsφ̂(Ex)|ψ〉 = 0 in terms
of the above mode decompositions. However, we shall rather pursue the physical projector
path, which will enable us to solve these conditions by at the same time also determining the
wavefunctions of the corresponding physical states, and including the constraints which arise
from the requirement of invariance under large gauge transformations as well. Nonetheless, let
us note that the resolution of the physical-state conditionsφ̂(Ex)|ψ〉 = 0 has been given in [11]
precisely using the functional coherent-state representation of the algebra of the field degrees of
freedom, to which we shall thus compare our results. The approach of [11, 12], however, uses
the formal manipulation and resolution of thefunctionaldifferential equations expressing the
physical-state conditions in the coherent-state wavefunction representation of the commutation
relations for the field operatorŝAz(z, z̄) andÂz̄(z, z̄). By working rather in terms of Fourier
modes as done here in the case of the torusT2, such formal manipulations are avoided by
having only adiscreteinfinity of such operators, thus leaving only the much less critical issue
of evaluatingdiscreteinfinite products of normalization factors for quantum states, for which
ζ -function regularization techniques will be applied (since other regularizations would require
some physical scale, and hence some geometry structure to be introduced onT2).

5. The physical projector

In order to construct the physical projector, which in effect projects out from any state its gauge-
variant components by averaging the state over all its gauge transformations and thereby only
leaving its gauge-invariant components [7], let us first consider the operator which induces all
finite small gauge transformations, namelyÛ (θ0) = exp(i/h̄

∫
T2

d2Ex θ0(Ex)φ̂(Ex)). In terms of
the previous mode representations and definitions, one finds

− 1

4π

√
τ2

h̄Nk

∫
T2

d2Ex θ0(Ex)φ̂(Ex) = 1

2
√

2

+∞∑
n2=1

[
+n2θ

+−
0 (0, n2)α

++(0, n2)
]

+
1

2
√

2

+∞∑
n1=1

[−n1τ̄ θ
−+
0 (n1, 0)α

++(n1, 0)
]

+
1

2
√

2

+∞∑
n2=1

[−n2θ
++
0 (0, n2)α

+−(0, n2)
]

+
1

2
√

2

+∞∑
n1=1

[
+n1τ̄ θ

++
0 (n1, 0)α

−+(n1, 0)
]

+1
4

+∞∑
n1=1

+∞∑
n2=1

[(
+n2θ

+−
0 (n1, n2)− n1τ̄ θ

−+
0 (n1, n2)

)
α++(n1, n2)

]

+1
4

+∞∑
n1=1

+∞∑
n2=1

[(−n2θ
++
0 (n1, n2)− n1τ̄ θ

−−
0 (n1, n2)

)
α+−(n1, n2)

]
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+1
4

+∞∑
n1=1

+∞∑
n2=1

[(
+n2θ

−−
0 (n1, n2) + n1τ̄ θ

++
0 (n1, n2)

)
α−+(n1, n2)

]
+1

4

+∞∑
n1=1

+∞∑
n2=1

[(−n2θ
−+
0 (n1, n2) + n1τ̄ θ

+−
0 (n1, n2)

)
α−−(n1, n2)

]
+
[
h.c.

]
. (27)

Note that, as it should, the zero modeθ++
0 (0, 0) of the gauge parameter functionθ0(Ex) does

not appear in this expression, and that the zero-mode operatorsα++(†)(0, 0) do not contribute
either, showing once again that only small gauge transformations are generated by the first-
class constraintφ(Ex). Moreover, it is possible to verify that the commutators of the quantity
in (27) with the modesÂ±±i (n1, n2) do reproduce the expressions in (15), while leaving the
zero modesÂ++

i (0, 0) invariant, since we have, using the property in (43),

Û (θ0) Â
±±
i (n1, n2) Û

−1(θ0) = Â±±i (n1, n2) +

[
i

h̄

∫
T2

d2Ex θ0(Ex)φ̂(Ex), Â±±i (n1, n2)

]
. (28)

To determine how to construct the operator which generates the large gauge
transformations characterized by the holonomies(k1, k2), let us consider the zero mode
A++
z̄ (0, 0) (a similar analysis is possible based onA++

z (0, 0)), whose gauge transformation
is given by (see (16) and (22))

1A++
z̄ (0, 0) = −

i

2τ2
2π [τk1− k2]. (29)

Consequently, the associated annihilation operatorα++(0, 0) should transform according to

Û (k1, k2) α
++(0, 0) Û−1(k1, k2) = α++(0, 0)− 2iπ

√
Nk

h̄τ2
[τk1− k2] (30)

where Û (k1, k2) stands for the operator generating the large gauge transformation of
holonomies(k1, k2). Therefore, we must have

Û (k1, k2) = C(k1, k2) exp

[
2iπ

h̄

√
h̄Nk

τ2

{
[τ̄ k1− k2] α++(0, 0) + [τk1− k2] α++†

(0, 0)
}]

(31)

whereC(k1, k2) is a cocycle factor to be determined presently such that the group composition
law is obeyed for large gauge transformations,

Û (`1, `2) Û(k1, k2) = Û (`1 + k1, `2 + k2). (32)

Since—using the property in (43)—the latter constraint translates into the cocycle condition

e−4iπ2(Nk/h̄)[`1k2−`2k1] C(`1, `2) C(k1, k2) = C(`1 + k1, `2 + k2) (33)

a careful analysis shows that the unique solution to this cocycle condition is

Nk = h̄

4π
k C(k1, k2) = eiπkk1k2 (34)

wherek = 1, 2, . . . , is some positive integer value. This specific result for the normalization
factorNk will thus be assumed henceforth.

These results therefore establish that consistency of the quantized system under the action
of large gauge transformations in its zero-mode sectorÂ++

i (0, 0) requires the quantization
of the normalization factorNk in precisely such a manner that a total ofk gauge-invariant
physical states are expected to exist within the entire space of quantum states generated by
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the coherent states constructed above. In addition, the operatorÛ (k1, k2) associated with
the large gauge transformation of holonomy(k1, k2) is thereby totally specified, while the
operatorÛ (θ0) = exp(i/h̄

∫
T2

d2Ex θ0(Ex)φ̂(Ex)) associated with small gauge transformations of
the parameter functionθ0(Ex) is defined in (27).

Consequently, the projector onto gauge-invariant physical states should simply be
constructed by summing over all small and large gauge transformations the action of the
operatorsÛ (θ0) and Û (k1, k2) just described. Even though this is straightforward for the
large gauge transformations, the summation over the small ones still requires some further
specifications [7], stemming from the fact that the spectrum of the non-zero modes of the
gauge constraint̂φ(Ex) = 0 is continuous. Since, as was seen previously, the small gauge
invariance is such that half the non-zero modesA±±i (n1, n2) (n1 6= 0 or n2 6= 0) may be set
to zero, the other half being their conjugate phase space variables, let us discuss this specific
issue in the following much simpler situation.

Consider a single-degree-of-freedom system with coordinateq̂ and conjugate momentum
p̂, both Hermitian operators, whose commutation relation is the usual Heisenberg algebra
[q̂, p̂] = i, and subject to the first-class constraintq̂ = 0. As the spectrum of this latter operator
is continuous, the proper definition of a projector onto the states satisfying this constraint
requires us to consider rather the projector onto those states whoseq̂ eigenvalues lie within
some interval [−δ, δ], δ > 0 being a parameter whose value may be as small as required [7].
The latter projector is expressed as

Eδ ≡ E [−δ < q < δ] =
∫ δ

−δ
dq |q〉〈q| =

∫ +∞

−∞
dξ eiξ q̂ sin(ξδ)

πξ
(35)

assuming that the position eigenstates are normalized such that〈q1|q2〉 = δ(q1 − q2). By
construction, one has the required properties,

E2
δ = Eδ E†

δ = Eδ. (36)

However, one would rather wish to consider the operator singling out the|q = 0〉 component
of any state, namely,

E0 = |q = 0〉〈q = 0|. (37)

Even though this operator is indeed Hermitian, it is not strictly in involution since one has

E2
0 = δ(0)E0. (38)

In other words, since the position eigenstates of theq̂ operators are non-normalizable, the
operatorE0 does not define a projection operator in a strict sense, since even though it projects
onto the|q = 0〉 component, it thereby leads to a non-normalizable state satisfying the
constraintq̂ = 0. Nevertheless, the non-normalizable projectorE0 may be constructed from
the well defined oneEδ through the following limit:

E0 = lim
δ→0

1

2δ
Eδ =

∫ +∞

−∞

dξ

2π
eiξ q̂ . (39)

Hence, associated with the choice of normalization of position eigenstates〈q1|q2〉 = δ(q1−q2),
the non-normalizable projectorE0 onto the states such thatq̂|ψ〉 = 0 is simply represented by
the integral operator on the right-hand side of this last identity.

Transcribing these considerations to theU(1) Chern–Simons theory, it should be clear
that the (non-normalizable) projector onto the (non-normalizable) gauge-invariant physical
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states of the system is simply given by (recall that the modesθ++
0 (0, 0), θ+−

0 (n1, 0), θ
−+
0 (0, n2),

θ−−0 (n1, 0) andθ−−0 (0, n2) are non-existent)

E0 =
+∞∑

k1,k2=−∞
Û (k1, k2)

∏
±±

∏
n1,n2

∫ +∞

−∞

dθ±±0 (n1, n2)

2π
Û(θ0). (40)

Note that this physical projector also defines the physical evolution operator of the system, since
the first-class Hamiltonian operator vanishes identically,Ĥ = 0, a consequence of invariance
under local coordinate transformations in6.

6. Gauge-invariant physical states

The set of physical states of the system should now be identifiable simply by applying the
physical projectorE0 onto the entire space of states representing the operator algebra of modes
Â±±i (n1, n2). Working in the basis (25) of coherent states|z±±(n1, n2)〉, this is tantamount
to considering the diagonal matrix elements〈z±±(n1, n2)|E0|z±±(n1, n2)〉, since these matrix
elements simply reduce to a sum of the physical-state contributions as intermediate states,
namely,

〈z±±(n1, n2)|E0|z±±(n1, n2)〉 =
∑
r

〈z±±(n1, n2)|r〉〈r|z±±(n1, n2)〉

=
∑
r

∣∣〈r|z±±(n1, n2)〉
∣∣2 (41)

wherer is a discrete or continuous index labelling all physical states (only a finite numberk of
which are expected, of course). Therefore, when having obtained an expression for the diagonal
matrix elements〈z±±(n1, n2)|E0|z±±(n1, n2)〉 as a sum of modulus-squared quantities, the
physical states of the system together with their coherent-state wavefunction representations
are readily identified up to a physically irrelevant phase factor, knowing that except for the
factor e−|z

±±(n1,n2)|2/2 for each mode stemming from the normalization of the coherent states,
the wavefunctions〈r|z±±(n1, n2)〉 are necessarily functions of the variablesz±±(n1, n2) only,
but not of their complex conjugate valuesz̄±±(n1, n2). Had the system possessed some global
symmetry beyond theU(1) gauge invariance, the associated different quantum numbers of the
physical states could have been used to label them, thereby making it easier to identify them
as well as their wavefunctions from the above matrix elements suitably extended to include
the action of the global symmetry generators [9]. Note also that trying to extract the same
information—beginning with the number of physical states—from the partition function TrE0

would be problematic. Indeed, that latter quantity is ill-defined since neither the physical states
|r〉 nor the physical projectorE0 are normalizable quantities.

Given that the exponential arguments appearing in the definition of the gauge operators
Û (θ0) and Û (k1, k2) are linear in the creation and annihilation operatorsα±±(†)(n1, n2),
the explicit evaluation of the above diagonal coherent-state matrix elements of the physical
projectorE0 is rather straightforward even though not immediate for the modes withn1 6= 0
andn2 6= 0. Let us only give the outline of the calculation for the modes withn1 = 0 or
n2 = 0. The calculation for the modes withn1 6= 0 andn2 6= 0 is similar but involves some
matrix algebra since the integrations overθ++

0 (n1, n2) andθ−−0 (n1, n2), on the one hand, and
θ+−

0 (n1, n2) andθ−+
0 (n1, n2), on the other, are coupled to one another in each case.

Consider again a single-degree-of-freedom system with creation and annihilation operators
a† anda, respectively, such that [a, a†] = 1, together with the associated coherent states

|z〉 = e−
1
2 |z|2 eza

† |0〉 〈z|z〉 = 1 (42)



The physical projector and Chern–Simons theory 1043

where|0〉 is the usual Fock vacuum normalized as〈0|0〉 = 1. Using the identity

eA+B = e−
1
2 [A,B] eA eB (43)

valid for any two operatorsA andB which commute with their commutator [A,B], as well as
the obvious properties that

a |z〉 = z |z〉 eiλθa |z〉 = eiλθz |z〉 (44)

whereλ and θ are arbitrary real and complex variables, respectively (in keeping with the
notation in (27)), one readily concludes that diagonal coherent-state matrix elements of an
exponential operator whose argument is linear in the creation and annihilation operators are
simply given by

〈z|eiλ[θa+θ̄a†] |z〉 = e−
1
2λ

2|θ |2 eiλθ̄ z̄ eiλθz. (45)

Consequently, in the case of the matrix elements〈z±±(n1, n2)|E0|z±±(n1, n2)〉, the
integrations over the discrete infinite number of non-zero modesθ±±0 (n1, n2) (n1 6= 0 or
n2 6= 0, or both) for small gauge transformations simply correspond to Gaussian integrals for
each of these contributions, whose results are then multiplied by one another. As mentioned
previously, the ensuing discrete infinite products of normalization factors are handled using
ζ -function regularization techniques, rendering these products well defined. Moreover, the
discrete infinite products of the remaining Gaussian factors may be expressed as a simple
exponential whose argument is given by the integral over the torusT2 of a local quantity built
from the modesz±±(n1, n2) defining the coherent state|z±±(n1, n2)〉 for which the diagonal
matrix element is evaluated.

Similar considerations apply to the contribution from the zero-mode sectorz++(0, 0), but
the summation over the holonomies(k1, k2) is such that no clear separation of terms in the
form of (41), corresponding to the separate contributions of the distinct physical states, appears
to be feasible. In fact, the evaluation of the zero-mode sector contribution to the relevant
matrix elements requires an entirely different approach, which is detailed in the appendix and
uses different representations of the zero-mode algebra (18). In particular, it is shown in the
appendix that the total number of physical states is indeed equal to the value of the integer
k which quantizes the normalization factorNk in (34), so that the indexr introduced in (41)
takes the following finite set of values,r = 0, 1, . . . , (k − 1).

In order to give the final result of all of these calculations in a convenient form, let us
introduce the following quantities associated with the complex parametersz±±(n1, n2) (see
(22) and (23)):

A±±z̄ (n1, n2) =
√
f ±±(n1, n2)

4π

kτ2
z±±(n1, n2) (46)

thereby determining a specific functionAz̄(z, z̄) through its mode expansion. In turn, let us
then introduce the further modes defined in terms of those ofAz̄(z, z̄),

χ++(n1, n2) = i
τ2

π

−n2A
+−
z̄ (n1, n2)− n1τA

−+
z̄ (n1, n2)

n2
1τ

2 − n2
2

χ+−(n1, n2) = i
τ2

π

+n2A
++
z̄ (n1, n2)− n1τA

−−
z̄ (n1, n2)

n2
1τ

2 − n2
2

χ−+(n1, n2) = i
τ2

π

+n1τA
++
z̄ (n1, n2)− n2A

−−
z̄ (n1, n2)

n2
1τ

2 − n2
2

χ−−(n1, n2) = i
τ2

π

+n1τA
+−
z̄ (n1, n2) + n2A

−+
z̄ (n1, n2)

n2
1τ

2 − n2
2

(47)
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with again the understanding that the zero modeχ++(0, 0) = 0 is taken to vanish, and that
the would-be non-zero modesχ+−(n1, 0), χ−+(0, n2), χ−−(n1, 0) andχ−−(0, n2) (n1, n2 =
1, 2, . . .) do not appear in the mode expansions.

Correspondingly, the modes of the functions∂z̄χ(z, z̄) and∂zχ(z, z̄) are such that on the
one hand

∂z̄χ(z, z̄) = Az̄(z, z̄)− A++
z̄ (0, 0) (48)

namely that all modes of∂z̄χ(z, z̄) except for the zero mode(∂z̄χ)
++ (0, 0) = 0 coincide with

the corresponding ones ofAz̄(z, z̄), and on the other hand, the non-zero modes of∂zχ(z, z̄)

are given by

(∂zχ)
++ (n1, n2) = −1

n2
1τ

2 − n2
2

{[
n2

1|τ |2 − n2
2

]
A++
z̄ (n1, n2) + n1n2(τ − τ̄ )A−−z̄ (n1, n2)

}
(∂zχ)

+− (n1, n2) = −1

n2
1τ

2 − n2
2

{[
n2

1|τ |2 − n2
2

]
A+−
z̄ (n1, n2)− n1n2(τ − τ̄ )A−+

z̄ (n1, n2)
}

(∂zχ)
−+ (n1, n2) = −1

n2
1τ

2 − n2
2

{−n1n2(τ − τ̄ )A+−
z̄ (n1, n2) +

[
n2

1|τ |2 − n2
2

]
A−+
z̄ (n1, n2)

}
(∂zχ)

−− (n1, n2) = −1

n2
1τ

2 − n2
2

{
+n1n2(τ − τ̄ )A++

z̄ (n1, n2) +
[
n2

1|τ |2 − n2
2

]
A−−z̄ (n1, n2)

}
.

(49)

An important identity that the modes of the functionχ(z, z̄) satisfy is the functional
relation

∂z̄ (∂zχ) = ∂zAz̄ = ∂z (∂z̄χ). (50)

In terms of these different quantities, finally the coherent-state wavefunction for each of
thek physical states|r〉 of the system is given by (r = 0, 1, 2, . . . , k − 1),

〈r|Az̄(z, z̄)〉 ≡ 〈r|z±±(n1, n2)〉

= e−(kτ2/2π)(A++
z̄ (0,0))

2 1

η(τ)
2

[
r/k

0

](
−i
kτ2

π
A++
z̄ (0, 0)

∣∣kτ)
× exp

[
− ik

4π

∫
T2

dz ∧ dz̄ |Az̄(z, z̄)|2
]

× exp

[
ik

4π

∫
T2

dz ∧ dz̄ ∂z̄χ(z, z̄)∂zχ(z, z̄)

]
(51)

whereη(τ) is the Dedekindη-function,η = eiπτ/12∏+∞
n=1

(
1− e2iπnτ

)
,2 is the torusθ -function

with characteristics whose definition is given in the appendix, while the physically irrelevant
overall phase factor is set to unity. Note that in the last two exponential factors, the integral∫
T2

dz ∧ dz̄ |Az̄(z, z̄)|2 does include the contribution exp
(−kτ2|A++

z̄ (0, 0)|2/(2π)
)

from the
zero-mode componentA++

z̄ (0, 0) of the coherent state|z±±(n1, n2)〉, in contradistinction to
the second integral

∫
T2

dz ∧ dz̄ ∂z̄χ(z, z̄)∂zχ(z, z̄) which only includes contributions from the
non-zero modesA±±z̄ (n1, n2) (n1 6= 0 or n2 6= 0). This point is important when checking
gauge and modular invariance properties of these physical wavefunctions.

These wavefunctions coincide with those established in [11] by using a functional
representation of the commutations relations of the field degrees of freedomAi(Ex) in order to
solve for the physical-state conditionφ̂(Ex) = 0 as well as requiring invariance under large gauge
transformations. This identity of results thus demonstrates that the physical projector approach
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is indeed capable, without any gauge-fixing procedure whatsoever and thereby avoiding the
possibility of any Gribov problem, to properly identify the actual gauge-invariant content of
a system, even when this requires the projection down to only a finite number of components
from an initially infinite number of states.

By construction, the states whose coherent-state wavefunctions are given in (51) are
invariant under both large and small gauge transformations. However, this property does
not necessarily imply that the wavefunctions themselves are invariant under arbitrary gauge
transformations of the variablesAz̄(z, z̄). To make this point explicit, let us consider the
gauge transformations of the physical states, whose invariance should thus imply the following
identities:

〈r|Û−1(θ0)|Az̄(z, z̄)〉 = 〈r|Az̄(z, z̄)〉
〈r|Û−1(k1, k2)|Az̄(z, z̄)〉 = 〈r|Az̄(z, z̄)〉

(52)

valid both for small and large gauge transformationsÛ (θ0) andÛ (k1, k2) whatever the values
of their modesθ±±0 (n1, n2) or their holonomies(k1, k2).

In the case of small gauge transformations, a careful analysis of the contributions to the
relevant matrix elements establishes the result,

Û−1(θ0)|Az̄(z, z̄)〉 = exp

[
− ik

4π

∫
T2

dz ∧ dz̄
[
∂z̄χ∂zθ0 − ∂z̄θ0∂z̄χ

]] |Az̄(z, z̄) + ∂z̄θ0(z, z̄)〉
(53)

as well as

〈r|Az̄(z, z̄) + ∂z̄θ0(z, z̄)〉 = exp

[
− ik

4π

∫
T2

dz ∧ dz̄
[
(Az̄ − ∂z̄χ)∂zθ0 + ∂z̄θ0(Az̄ − ∂zχ)

]]
×〈r|Az̄(z, z̄)〉 (54)

whereAz̄(z, z̄) + ∂z̄χ(z, z̄) stands for the transformations of the modesA±±z̄ (n1, n2) under the
small gauge transformationθ0(Ex) of modesθ±±0 (n1, n2), with of course the understanding that
the zero modeA++

z̄ (0, 0) is left invariant.
Combining these two relations and using the identity in (50) after integration by parts in

the exponential factors (to which the zero modeA++
z̄ (0, 0) does not contribute), the first identity

in (52) then indeed follows, thereby confirming gauge invariance of the physical states under
small gauge transformations.

Similarly for a large gauge transformation̂U(k1, k2) of holonomies(k1, k2), one finds,

Û−1(k1, k2)|Az̄(z, z̄)〉 = eiπkk1k2 e−
1
2 ik[(k1τ−k2)A

++
z̄ (0,0)+(k1τ̄−k2)A

++
z̄ (0,0)]

×
∣∣∣∣Az̄(z, z̄)− iπ

τ2
(τk1− k2)

〉
(55)

as well as

〈r|Az̄(z, z̄)− iπ

τ2
(τk1− k2)〉 = e−iπkk1k2 e

1
2 ik[(k1τ−k2)A

++
z̄ (0,0)+(k1τ̄−k2)A

++
z̄ (0,0)] 〈r|Az̄(z, z̄)〉 (56)

where this timeAz̄(z, z̄) − iπ(τk1 − k2)/τ2 stands for the transformation of the modes
A±±z̄ (n1, n2) under the large gauge transformation of holonomies(k1, k2) which of course
affects only the zero modeA++

z̄ (0, 0) by the indicated constant shift linear ink1 and k2.
Consequently, these two relations also lead to the second identity in (52), thereby establishing
gauge invariance of the physical states under large gauge transformations as well.

These relations also demonstrate that in spite of the gauge invariance of the physical
states|r〉 (r = 0, 1, . . . , k − 1) under small and large transformations,Û (θ0)|r〉 = |r〉
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andÛ (k1, k2)|r〉 = |r〉, their coherent-state wavefunctions〈r|Az̄(z, z̄)〉 are not invariant by
themselves under the simple substitution of the gauge variation of their argumentAz̄(z, z̄),
namely the variationsA′z̄(z, z̄) = Az̄(z, z̄) + ∂z̄χ(z, z̄) for small gauge transformations and
A′z̄(z, z̄) = Az̄(z, z̄)− iπ(τk1− k2)/τ2 for large ones.

Let us now turn to the issue of modular invariance of the physical content of the quantized
system. If indeed this content depends only on the complex structure—parametrized by the
variableτ—as the only structure necessary beyond the mere topological one of the underlying
torusT2, the spectrum of physical states should remain invariant under the modular group
PSL(2,Z) of T2 which is generated by the transformations

T : τ → τ + 1 S : τ →−1

τ
. (57)

Indeed, these transformations correspond to global diffeomorphisms, namely Dehn twists, in
the local trivialization ofT2 characterized through the choice of holonomy basis (a, b) and the
associated coordinates 0< x1, x2 < 1, and these modular transformations define equivalences
classes for the values ofτ which correspond to a same complex structure (or conformal class)
onT2.

An explicit analysis of the transformation properties of the physical wavefunctions (51)
shows that the requirement of invariance of the physical content of the system under theT

modular transformation is met only if the integerk also takes an even value(see the appendix)
[11], in which case one finds

T : 〈r|Az̄(z, z̄)〉 → e−iπ/12 eiπr2/k 〈r|Az̄(z, z̄)〉. (58)

On the other hand, invariance under theS modular transformation is realized through the
transformations

S : τ → τ̃ = −1

τ
A++
z̄ (0, 0)→ Ã++

z̄ (0, 0) = −τ̄A++
z̄ (0, 0) (59)

while the non-zero modesA±±z̄ (n1, n2) are left unchanged, in which case one has (see the
appendix),

S : 〈r|Az̄(z, z̄)〉τ → 〈r|Ãz̄(z, z̄)〉τ̃ =
k−1∑
r ′=0

1√
k

e2iπrr ′/k 〈r ′|Az̄(z, z̄)〉τ . (60)

Hence, in addition to the quantization conditionNk = h̄k/(4π) imposed on the
normalization factorNk by the requirement of invariance under large gauge transformations,
modular invariance of the theory also requires that the integerk be even [11]. In this case the
space of quantum physical states does provide an irreducible representation of theT2 modular
group, showing that the physical content of the system does indeed depend only on the choice
of complex structure (or conformal class) onT2 characterized through the equivalence class
under the modular group of the parameterτ . Nevertheless, physical states are not individually
modular invariant, but rather they define a projective representation of the modular group. This
is how close the quantizedU(1)Chern–Simons theory is to being a purely topological quantum
field theory, the dependency on a complex structure onT2 following from the existence of a
conformal anomaly at the quantum level [6].

7. Conclusions

This paper has demonstrated that the new approach to the quantization of gauge-invariant
systems [7], based on the physical projector onto the subspace of gauge-invariant states, is
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perfectly adequate to handle the intricacies of topological quantum fields theories, in which
only a finite set of physical states is to remain after the infinity of gauge-variant configurations
has been projected away. This new approach to the quantization of constrained systems does
not require any gauge-fixing procedure whatsoever and is thus free of any potential Gribov
ambiguity in the case of gauge symmetries [8], in contradistinction to all other quantization
frameworks for gauge-invariant systems. Another of its advantages is that the physical projector
approach to the quantization of such theories is directly set simply within Dirac’s formulation,
where it finds its natural place. In particular, the physical projector enables the construction
of the physical evolution operator of such systems, to which only physical states contribute as
intermediate states, so that the physical content may be identified directly from the matrix
elements of that evolution operator, including the wavefunctions of physical states. For
topological field theories, since these systems are invariant under local diffeomorphisms in
the base manifold, their gauge-invariant Hamiltonian vanishes identically, in which case the
evolution operator coincides with the physical projector.

More specifically, the physical projector approach was applied to theU(1) pure Chern–
Simons theory in 2 + 1 dimensions in a space whose topology is that ofR × T2, whereT2 is
an arbitrary two-dimensional torus. Through a careful analysis of the quantized system, of
the relevant physical projector, and in particular of the specific discrete infinite mode content
of the system, it has been possible to identify and construct the physical spectrum and the
coherent-state wavefunctions of the gauge-invariant states, leading to results which are in
complete agreement with those of other approaches to the quantization of the same system
[6, 11–14], while also avoiding some of complications or formal manipulations inherent to
these other approaches. The only more or lessad hocbut unavoidable feature which is
introduced in our analysis is that the discrete infinite products—rather than continuous ones as
occurs in functional representations—of Gaussian normalization factors have been evaluated
usingζ -function regularization, which avoids having to introduce any other structure on the
underlying two-dimensional Riemann surface beyond those associated already to the topology
and complex structure (or conformal class) of that surface. This is in keeping with the fact that
the quantized theory only depends on that complex structure but no other structure beyond it
(even when one is introduced, namely through a metric structure [6]), while also a dependency
on the complex structure rather than purely the topology of the underlying manifold is the
unavoidable consequence of the quantization of the system [6]. In particular, it was shown
how gauge invariance under large gauge transformations implies a quantization rule for the
overall normalization of the classical Chern–Simons action in terms of an integer equal to the
number of physical states, which in turn is also required to be even for modular invariance
to be realized [11]. When both these restrictions are met, the quantized system indeed only
depends on the complex structure introduced on the underlying Riemann surface.

These systems are also distinguished by the fact that their physical phase space is a
compact manifold, in the present instance with the topology of a two-dimensional torus,
which is in contradistinction to the ordinary situation in which the phase space of a given
system is a cotangent bundle. Usually, geometric quantization techniques are then invoked in
order to address the specific issues raised by a phase space having a compact topology [21].
Nevertheless, no such techniques were introduced here, but rather by properly identifying
the operator which generates the transformations responsible for such a compact topology
of phase space—in the present instance large gauge transformations—it was possible to
properly represent the consequences of such a circumstance using straightforward coherent-
state techniques of ordinary quantum mechanics. Clearly, similar considerations based on the
construction of the relevant projection operator are of application to any system whose phase
space includes a compact manifold which is a homogeneous coset spaceG/H , whereG and
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H are compact Lie algebras. From that point of view, it may well be worthwhile to explore
the potential of the physical projector as an alternative to geometric quantization techniques.

The physical projector approach is thus quite an efficient approach to the quantization of
gauge-invariant systems, which does not require any gauge-fixing procedure whatsoever and
thus avoids the potential Gribov problems inherent to such procedures. Some of its advantages
have been illustrated here in the instance of theU(1) Chern–Simons theory, as well as for
some simple gauge-invariant quantum mechanical systems elsewhere [9, 10]. Hence, it appears
timely now to start exploring the application [22] of this alternative method to the quantization
of gauge-invariant systems of more direct physical interest, within the context of the recent
developments surrounding M-theory compactified to low dimensions, and aiming beyond that
towards the gauge-invariant theories of the fundamental interactions among the elementary
quantum excitations in the natural Universe.

Acknowledgments

Professor John Klauder is gratefully acknowledged for useful conversations concerning the
physical projector, and for his constant interest in this work. This work is part of the
undergraduate Diploma Thesis of BD.

Appendix

This appendix outlines the calculation of the contribution of the zero-mode sector to the
coherent-state diagonal matrix elements〈z±±(n1, n2)|E0|z±±(n1, n2)〉of the physical projector
operator, namely the quantity

+∞∑
k1,k2=−∞

〈z|Û (k1, k2)|z〉 =
+∞∑

k1,k2=−∞
〈z|eiπkk1k2 ei

√
πk/τ2{[τ̄ k1−k2]α+[τk1−k2]α†}|z〉. (A1)

Here,z,α andα† stand of course for the zero-mode sector only, with the obvious understanding
that usual indices distinguishing these zero modes, such asz++(0, 0), are not explicitly displayed
in this appendix.

Since the evaluation of these matrix elements requires changes of bases for different
representations of the associated quantum algebra, let us recall here the relations between the
different quantum operators appearing in this sector of the system. One has the definitions

α = 1

2

√
k

πτ2

[−iτ Â1 + iÂ2
]

α† = 1

2

√
k

πτ2

[
iτ̄ Â1− iÂ2

]
(A2)

while the corresponding commutation rules are[
Â1, Â2

] = 2iπ

k
[α, α†] = 1 (A3)

with the implicit understanding that botĥA1 and Â2 are Hermitian operators. Using these
relations as well as the identity in (43), large gauge transformations also read as

Û (k1, k2) = eiπkk1k2 eik[k1Â2−k2Â1] = eikk1Â2 e−ikk2Â1. (A4)

Since the algebra for the modesÂ1 andÂ2 is that of the usual Heisenberg algebra, withÂ1

playing the role of the configuration-space coordinate andÂ2 that of the conjugate momentum
variable, it is clear from the last expression above of the operatorÛ (k1, k2) in terms of
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these modes, that the mixed configuration–momentum-space matrix elements ofÛ (k1, k2)

are readily obtained. Hence, let us develop the different representations of the commutations
relations (A3), namely the configuration space, the momentum space and the coherent state
ones.

Configuration and momentum-space representations correspond to eigenstates|A1〉 and
|A2〉 of theÂ1 andÂ2 operators, respectively,

Â1|A1〉 = A1|A1〉 Â2|A2〉 = A2|A2〉 (A5)

whose normalization is chosen to be such that

〈A1|A′1〉 = δ(A1− A′1) 〈A2|A′2〉 = δ(A2 − A′2) (A6)

to which the following representations of the identity operator are thus associated:

1l =
∫ +∞

−∞
dA1 |A1〉〈A1| 1l =

∫ +∞

−∞
dA2 |A2〉〈A2|. (A7)

Since the factor ¯h′ = 2π/k plays the role of an effective Planck constant, it is clear that the
configuration-space wavefunction representations of the two operatorsÂ1 andÂ2 are simply,

〈A1|Â1|ψ〉 = A1 〈A1|ψ〉 〈A1|Â2|ψ〉 = −2iπ

k

∂

∂A1
〈A1|ψ〉 (A8)

and for the momentum space wavefunction representations,

〈A2|Â1|ψ〉 = 2iπ

k

∂

∂A2
〈A2|ψ〉 〈A2|Â2|ψ〉 = A2 〈A2|ψ〉. (A9)

In particular, given the above choice of normalization, we have for the matrix elements
expressing the corresponding changes of basis,

〈A2|A1〉 =
√
k

2π
e−(ik/2π)A1A2 〈A1|A2〉 =

√
k

2π
e+(ik/2π)A1A2. (A10)

Let us now consider the Fock state representation of the same quantum algebra, whose
set of orthonormalized basis vectors is thus defined by

|n〉 = 1√
n!

(
α†
)n|0〉 (A11)

where|0〉 is of course the Fock vacuum normalized such that〈0|0〉 = 1. Given the above
configuration-space representation, the configuration-space wavefunctions of the Fock basis
vectors are easily constructed. For the vacuum, one finds from the conditionα|0〉 = 0,
including proper normalization,

〈A1|0〉 =
(
kτ2

2π2

)1/4

e(ik/4π)τA
2
1 (A12)

while the excited Fock states are such that

〈A1|n〉 =
(
kτ2

2π2

)1/4 1√
n!

(
iτ̄

2τ2

)n/2 [
u− d

du

]n
e

1
2 (τ/τ̄ )u

2
u =

√
ikτ̄

2π
A1. (A13)

In order to solve for these latter expressions, let us introduce polynomialsPn(u; λ) generalizing
the usual Hermite polynomials, and defined by the generating function

e−
1
2 (1+λ)t2+(1+λ)tu =

+∞∑
n=0

tn

n!
Pn(u; λ) (A14)
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whereλ is a complex parameter. These polynomials satisfy the following set of properties:

Pn(u; λ) = e
1
2λu

2

[
u− d

du

]n
e−

1
2λu

2
(A15)

Pn+1(u; λ) = (1 +λ)uPn(u; λ)− d

du
Pn(u; λ) (A16)

P0(u; λ) = 1 P1(u; λ) = (1 +λ)u. (A17)

Hence, finally, one finds

〈A1|n〉 =
(
kτ2

2π2

)1/4 1√
n!

(
iτ̄

2τ2

)n/2
e(ikτ/4π)A

2
1 Pn

(√
ikτ̄

2π
A1; −iτ

iτ̄

)
. (A18)

Similarly for the momentum wavefunctions, one has

〈A2|n〉 =
(

kτ2

2π2|τ |2
)1/4

(−i)n√
n!

(
iτ̄

2τ2

)n/2
e(k/4iπτ)A2

2 Pn

(√
k

2iπτ̄
A2; iτ̄

−iτ

)
. (A19)

Finally, let us consider the coherent-state basis,

|z〉 = e−
1
2 |z|2 ezα

† |0〉 1l =
∫

dz ∧ dz̄

π
|z〉〈z|. (A20)

Using the relations

α|z〉 = z|z〉 〈n|z〉 = zn√
n!

e−
1
2 |z|2 (A21)

as well as the above generating function for the polynomialsPn(u; λ) which appear in the
matrix elements〈A1|n〉 and〈A2|n〉, the following results are readily obtained:

〈A1|z〉 =
(
kτ2

2π2

)1/4

e−
1
2 |z|2 e(ikτ/4π)A

2
1 e−

1
2 z

2+zA1
√
(kτ2/π) (A22)

〈A2|z〉 =
(

kτ2

2π2|τ |2
)1/4

e−
1
2 |z|2 e(k/4iπτ)A2

2 e
1
2 (iτ̄ /−iτ)z2+(zA2/τ)

√
kτ2/π . (A23)

Having established these different changes of bases, let us return to the evaluation of
the matrix element (A1). Obviously, given (A4), the mixed configuration–momentum space
matrix elements are simply

〈A2|
+∞∑

k1,k2=−∞
Û (k1, k2)|A1〉 =

+∞∑
k1,k2=−∞

√
k

2π
eikk1A2 e−ikk2A1 e−(ik/2π)A1A2. (A24)

Using the identities

+∞∑
k1=−∞

eikk1A2 =
+∞∑

n1=−∞

2π

k
δ

(
A2 − 2πn1

k

)
(A25)

+∞∑
k2=−∞

e−ikk2A1 =
+∞∑

n2=−∞

2π

k
δ

(
A1− 2πn2

k

)
(A26)
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one also has

〈A2|
+∞∑

k1,k2=−∞
Û (k1, k2)|A1〉 = 2π

k

1√
k

+∞∑
n1,n2=−∞

e−(2iπ/k)n1n2 δ

(
A2 − 2πn1

k

)

×δ
(
A1− 2πn2

k

)
. (A27)

However, in this form it is not yet possible to identify the different contributions of the
physical states in the form of modulus-squared terms. In order to achieve that aim, let us finally
compute the configuration-space matrix elements of the relevant operator, using the change of
basis〈A1|A2〉 above. One then obtains,

〈A1|
+∞∑

k1,k2=−∞
Û (k1, k2)|A′1〉 =

∫ +∞

−∞
dA2 〈A1|A2〉〈A2|

+∞∑
k1,k2=−∞

Û (k1, k2)|A′1〉

= 2π

k

+∞∑
n2=−∞

[
δ

(
A′1−

2πn2

k

) +∞∑
n1=−∞

δ

(
A1− 2πn2

k
− 2πn1

)]
. (A28)

Having thus obtained the configuration-space matrix elements of the zero-mode physical
projector operator, let us finally apply it onto any state of this sector of the quantized system.
Introducing the configuration-space wavefunction

|ψ〉 =
∫ +∞

−∞
dA1 |A1〉〈A1|ψ〉 =

∫ +∞

−∞
dA1 |A1〉ψ(A1) ψ(A1) ≡ 〈A1|ψ〉 (A29)

one readily derives,

〈A1|
+∞∑

k1,k2=−∞
Û (k1, k2)|ψ〉 =

∫ +∞

−∞
dA′1 〈A1|

+∞∑
k1,k2=−∞

Û (k1, k2)|A′1〉〈A′1|ψ〉

= 2π

k

+∞∑
n2=−∞

[
ψ

(
2πn2

k

) +∞∑
n1=−∞

δ

(
A1− 2πn2

k
− 2πn1

)]
. (A30)

In particular, since physical states are to be invariant under the action of the physical projector∑+∞
k1,k2=−∞ Û (k1, k2), they should thus obey the following equation:

2π

k

+∞∑
n2=−∞

[
ψ

(
2πn2

k

) +∞∑
n1=−∞

δ

(
A1− 2πn2

k
− 2πn1

)]
= ψ(A1). (A31)

However, since this equation possessesk distinct linearly independent solutions given by

〈A1|r〉 = ψr(A1) = 2π

k
Cr

+∞∑
n=−∞

δ

(
A1− 2πr

k
− 2πn

)
r = 0, 1, 2, . . . , k − 1

(A32)

whereCr is some normalization factor, it is clear that there are exactlyk distinct physical
states|r〉 for the quantizedU(1) Chern–Simons theory whose action is normalized with the
factorNk = h̄k/(4π). Moreover, the normalizationCr for each of these configuration-space
wavefunctions of physical states is obtained from the obvious condition

〈A1|
+∞∑

k1,k2=−∞
Û (k1, k2)|A′1〉 =

k−1∑
r=0

〈A1|r〉〈r|A′1〉. (A33)
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The explicit resolution of this last constraint then finally provides the following configuration-
space wavefunctions for thek physical states|r〉 (r = 0, 1, 2, . . . , k − 1):

〈A1|r〉 =
√

2π

k

+∞∑
n=−∞

δ

(
A1− 2πr

k
− 2πn

)
. (A34)

The coherent-state wavefunctions〈r|z〉 of the same states are then easily obtained, using
the associated change of basis specified by the quantities〈A1|z〉, namely

〈r|z〉 =
∫ +∞

−∞
dA1 〈r|A1〉〈A1|z〉. (A35)

An explicit calculation then finds

〈r|z〉 =
(

2τ2

k

)1/4

e−
1
2 |z|2 e

1
2 (−iz)2 2

[
r/k

0

](
−ik

√
τ2

πk
z
∣∣kτ) (A36)

where the2-function with characteristics is defined by [23]

2

[
α

β

] (
z
∣∣τ) = +∞∑

n=−∞
eiπτ(n+α)2+2iπ(n+α)(z+β). (A37)

With respect to modular transformations, two useful identities for these2-functions are

2

[
r/k

0

] (
x
∣∣k(τ + 1)

) = eiπr2/k 2

[
r/k

0

] (
x
∣∣kτ) only if k is even (A38)

2

[
r/k

0

](
x
∣∣− k

τ

)
= 1

k
(−ikτ)1/2 eiπτr2/k

k−1∑
r ′=0

e2iπrr ′/k 2

[
r ′/k

0

] (−τx∣∣kτ). (A39)
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