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Abstract. The recently proposed physical projector approach to the quantization of gauge-
invariant systems is applied to tt&(1) Chern—Simons theory in 2 + 1 dimensions as one of
the simplest examples of a topological quantum field theory. The physical projector is explicitly
demonstrated to be capable of effecting the required projection from the initially infinite number
of degrees of freedom to the finite set of gauge-invariant physical states whose properties are
determined by the topology of the underlying manifold.

1. Introduction

The general gauge invariance principle pervades all of modern physics at the turn of this century,
as a most basic conceptual principle unifying the fields of algebra, topology and geometry with
those of the fundamental interactions of the elementary quantum excitations in the natural
Universe. This fascinating convergence of ideas is probably nowhere better demonstrated
than within the recent developments of M-theory as the prime (and sole) candidate for a
fundamental unificationt. Given the many mathematics and physics riches hidden deep within
the structures and dynamics of gauge-invariant theories, a thorough understanding sets a
genuine challenge to the methods developed over the years in order to address such issues. For
example, a manifest realization of the gauge invariance principle requires the presence among
the degrees of freedom of such systems of redundant variables whose dynamics is specified
through arbitrary functions characterizing the gauge freedom inherent to the description. This
situation leads to specific problems, especially when quantizing such theories, since some
gauge-fixing procedure has to be applied in order to effectively remove in a consistent way
the contributions of gauge-variant states to physical observables. More often than not, such
gauge fixings suffer Gribov problems [2—4], which must be properly addressed if one is to
correctly account for the quantum dynamics of gauge-invariant systems, certainly within a
non-perturbative framework. Among gauge theories, topological quantum field theories [5, 6]
provide the most extreme example of such a situation, since their infinite number of degrees
of freedom includes only finite number of gauge-invariant physical states, whose properties
are in addition solely determined by the topology of the underlying manifold irrespective of
its geometry.

T For arecent discussion, see for example [1].
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1032 J Govaerts and B Deschepper

In a recent development [7], a new approach to the quantization of gauge theories was
proposed, which avoids from the outset any gauge fixing and thus any issue of the eventuality
of some Gribov problem [8]. This approach is directly set within the necessary framework
of Dirac’s quantization of constrained systemst. No extension—uwith itegerdf ghosts
and ghosts for ghosts—or reduction of the original set of degrees of freedom is required, as
is the case for all approaches which necessarily implement some gauge-fixing procedure with
its inherent risks of Gribov problems [4]. Nonetheless, the correct representation of the true
quantum dynamics of the system is achieved in this new approach, which uses in an essential
way the projection operator [7] onto the subspace of gauge-invariant physical states of a given
gauge-invariant system. Some of the advantages of the physical projector approach have
already been explored and demonstrated in a few simple quantum mechanical gauge-invariant
systems [9, 10]. In this paper, we wish to illustrate how the same methods are capable of
also dealing with the intricacies of topological quantum field theories which, even though
possessing only a finite set of physical states, require an infinite number of degrees of freedom
and states for their formulation. Indeed, it will be shown that the physical projector precisely
effects this required projection.

The specific case addressed here as one of the simplest possibilities, is that of the pure
Chern-Simons theory in 2 + 1 dimensions with gauge gr@dgp. Moreover, the discussion
will be made explicit when the topology of the underlying manifold is thaEok R, where
¥ is a two-dimensional compact Riemann surface taken to be a 2-Tericss most of our
considerations. This system has been studied from quite a few different points of view
[6, 11-15]. The consistency of the physical projector approach will be demonstrated by again
deriving some of the same results through an explicit resolution of the gauge-invariant quantum
dynamics within this specific framework which avoids any gauge fixing whatsoever and thus
also any Gribov problem.

The outline of the discussion is as follows. Section 2 briefly elaborates on the classical
constrained Hamiltonian formulation for Chern—Simons theories with an arbitrary gauge
symmetry group. These considerations are then particularized in section 3tqthease
restricted to th& x T, topology, enabling a straightforward Fourier mode analysis of the then
discrete infinite set of degrees of freedom. In section 4, the Dirac quantization of the system
is developed, leading in section 5 to the construction of the physical projector. These results
are then explicitly used in section 6 in order to identify the spectrum of physical states in the
U (1) theory and to determine their coherent-state wavefunction representations. Finally, the
discussion ends with conclusions, while some necessary details are included in an appendix
in order not to detract from the main line of arguments.

2. Classical Chern—Simons theories
Let G be a compact simple Lie group of Hermitian generafttga = 1, 2, ..., dim G) and

structure constantg“”* such that T, 7] =i f*“T*. In terms of the gauge connectiai,
the action for the associatéd + 1)-dimensional Chern—Simons theory is then given by

S = N /sz dx®dxt dx? e[ A%D, AY — 2 FC AL AL AC ]
novp

= %Nk/R . dx%dx!dx? Eﬂvp[Azz F¢ + %fabcAZAﬁA;] )
x

T For a detailed discussion and references to the original literature, see for example [4].
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whereFd, = 9, A% — 8,A% — fec AP AS, €912 = +1, while N, is a normalization factor (the
usual gauge coupling constanhas been absorbed into the gauge connectipn

As is well known, under small gauge transformations (i.e. continuously connected to
the identity transformation), the Lagrangian density in (1) remains invariant up to a surface
term. For large gauge transformations, however (i.e. those transformations in a homotopy
class different from that of the identity transformation), the action (1) changes by a term
proportional to atopological invariant, namely the winding number of the gauge transformation.
Consequently, at the quantum level, invariance under large gauge transformations requires that
the normalization facto®V, be quantized, which is the reason for its notation. Note also
that no metric structure whatsoever is necessary for the definition of the action (1). Indices
u,v, p = 0,1, 2 are neither raised nor lowered, while the notation, though reminiscent of a
Minkowski signature metric, is in fact related to the specific topolRgy> considered for the
three-dimensional manifold. The choice of the real linfar the time evolution coordinate?
is made for the purpose of canonical quantization hereafter, while any other type of compact
topology for the three-dimensional manifold may be obtained fRomX through gluing and
twisting [6].

Hence, equation (1) defines a topological field theory, namely a field theory whose gauge
freedom is so large that its gauge-invariant configurations characterize solely the topology of
the underlying manifold, irrespective of its geometry [5]. In the present case, this is made
obvious in terms of the associated equations of motion,

¢PFL =0 & F4 =0 2)

Indeed, the modular space of flat gauge connections on the base manifold is finite dimensional
and purely topological in its characterization through holonomies around the non-contractible
cycles in the manifold. Quantization of the Chern—Simons theory thus defines the quantization
of a system whose configuration space—which actually coincides with its phase space—is this
modular space of flat connections.

The action (1) being of first-order form in time derivatives of fields, is already in the
Hamiltonian form necessary for canonical quantization [4, 16]. Indeed, we explicitly have,

S = / o [0 Af Nee'l AG + AG Ne Fy — 0; (Nie AGAG)] )

where e’/ (i, j = 1,2) is the two-dimensional antisymmetric symbol wigh?> = +1.
Consequently, the actual phase space of the system consists of the field compthents
(i = 1,2) which form a pair of conjugate variables with symplectic structure defined by
the brackets

. . 1, L
{A4(F, x9), A5, x0)) = == 8" 8@ (¥ — ). (4)
2Ny

In addition, the first-class Hamiltonian of the system vanishes identidally, O, as befits any
system invariant under local coordinate reparametrizations, while finally the time components
Aj§ of the gauge connection are the Lagrange multipliers for the first-class constraints

¢ = —2Ni Fj = —2N; [01A5 — 9,4 — f° A Aj] (5)
whose algebra of brackets is that of the gauge g@up

{99(%,x0), ¢* (5, x0)) = fP¢ (%, x98P@ (¥ - y). (6)
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That these constraints are indeed the local generators of small gauge transformations is
confirmed through their infinitesimal action on the phase space variables

8y Af (%, x%) = {A?(a?,x%, /Z dzieb(i,x")cpb@,x")}
= 9;09(x, x0) + f0b (%, x®) AS (%, x°) 7
while the Lagrange multiplierd§ must vary according to
89 AS(X, x0) = 300 (X, x0) + feb0b (X, x%) AG (X, xO). (8)

The constraintg® also coincide, up to surface terms, with the Noether charge densities related
to the gauge symmetry. Indeed, the Noether currgfits= e“”PNkf“b"AfjA;; are conserved
for solutions to the equations of motiod),y** = 0, so that the associated charges read

0" = [ &y 0 = [ 9"+ 2Ne(@nag - 02D, ©)
z z

The above conclusions based on the first-order action (3) are of course confirmed through
an explicit application of Dirac’s algorithm for the construction of the Hamiltonian formulation
of constrained systems [4]. In particular, the brackets (4) then correspond to Dirac brackets
after second-class constraints have been solved for, while (3) then describes the so-called
‘fundamental Hamiltonian formulation’ [4] of any dynamical system. Incidentally, note that
surface terms which appear in (3) and (9) are irrelevant for such a Hamiltonian construction,
which is in essence a local construct on the manifoldin any case, they do not contribute
whenX is without boundaries.

3. TheU(1) theory on the torus

Henceforth, we shall restrict the discussion to the gauge gtbupU (1) and to the compact
Riemann manifold: being the two-dimensional tords. This choice is made for the specific
purpose of demonstrating that the physical projector approach is capable of properly quantizing
such theories in the simplest of cases, leaving more general choices to be explored elsewhere
with the same techniques. In particular, the torus mode expansions to be specified presently may
be extended to Riemann surface®f arbitrary genus through the use of Abelian differentials

and the Krichever—Novikov operator formalism [11-13, 17-19]. The extension to non-Abelian
gauge groupss requires further techniques of coherent-states not included in the present
discussion.

Given the manifoldx = T, let us consider the local trivialization of this topology
associated with a choice of basis of its first homology group with cyaleand b.
Correspondingly, the choice of local coordinatgsand x? is such that 0< x!, x? < 1.

Related to this trivialization of>, fields overT, may be Fourier expanded, so that the total
number of degrees of freedom, though infinite, is represented in termslisti@teset of
modes ovefl». Explicitly, in a real parametrization we have (from here on, any dependency
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on xC is left implicit while the single index = 1 for G = U (1) is not displayed),
+00 +00
Ai(X) = Z Z A" (ny1, np) cos Zrnixt cos 2rnpx?
n1=0n,=0
+00 +00
+ Z Z A;'_(nl, 1) €OS 2rnyx’ sin 2rnyx?
n1=0ny=1
+00 +00
+ Z Z Ai_+(n1, ny) Sin 2rn1xt cos 2rnox?
n1=1n,=0
+00 +00
+ Z Z A7 (n1, np)sin 2rnixt sin 2rnox?. (10)
ni=1ny=1
Let us emphasize that such expansions do notinclude the terms which would be associated with
the following modesA; ™ (n1, 0), A7 (0, np), A; ~(n1, 0)andA; ~ (0, np) (n1,n2 = 1, 2,...).
Similar mode expansions—to which the remark just made also applies—are obtained for any
quantity defined over,. For theU (1) generatow (x), one has (for a non-Abelian group,
terms bilinear in theﬁiﬁ(nl, n,) modes also contribute, which is the reason for our restriction
toG = U(1))

¢ (n1, n2) = —4m Ni[+n1A5 " (n1, n) — naAy (n1, n2)|
¢" (n1,n2) = —4m Ni[+n1A5 7 (n1, n2) + n2A7" (na, no) | (11)
¢~ F(n1. n2) = —4n Ni[—n1A5" (n1, nz) — naA7 ™ (n1, no)]

¢~ (n1,n2) = —4n Ni[—n1A5 (n1, n2) + n2A7" (n1, na)].

Since {¢(X), (¥)} = 0 in the AbelianU (1) case, all the mode$**(ny, ny) have
vanishing brackets with one another, while those for the phase space mﬁdeml, ny)
are given by

2

(AT (12, n2). A3 (ma.m2)} = < f55(12,12) Sy S (12)

where
1 1 - 811 0
++ _ - = =

e T B A R

(1+2 (13)
f T (ny,np) = n1.0 fm (1, n2) = (L= 8,,,00(1 — 8p,.0)-

1+ 3112,0

In order to understand how small and large gauge transformations—the latter not being
generated by the first-class constrgif)—are represented in terms of these mode expansions,
let us consider the general gauge transformation of the figldnamelyA;, = A, + 4,0,

associated with the/ (1) local phase transformatioii (¥, x%) = €%+"_ A point central to
our discussion is that the arbitrary functieex, x°) may always be expressed as

0(%, x%) = 0p(x, x°) + 2mkyxt + 2mkpx? (14)

wherefy (X, x°) is an arbitraryperiodic function, i.e. ascalar fieldon 7», while k; andk, are
arbitrary positive or negative integers. Indeed, any small gauge transformation is defined in
terms of some functioy (¥, x%) with (k1, k) = (0, 0), while any large gauge transformation
6(x, x% may always be brought to the above general form with some specific fugtian:°),
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the integers; andk, then labelling the/ (1) holonomies of the gauge transformation around
the choser: andb homology cycles irff,. Any gauge transformation thus falls into such a
(k1, k2) homotopy class of the gauge group ovgr In terms of the mode expansion of the
gauge parameter function (14), the non-zero mo«féé(nl, np) (n1 # 0 orny # 0, or both)
are transformed according to

AAT (1, np) = +2n165 " (n1, np) AAS (1, np) = +2nz0y (n1, np)

AAI_(nl, ny) = +2wn16, " (n1, ny) AAZ_(nl, np) = —2nn295+(n1, no) (15)
AAT (n1, np) = —2mna6y " (n1, na) AAZ " (n1, np) = +2mno05 ~ (ny, n2)

AAT (ny, n2) = —27m1957(n1, n2) AA; (ny, np) = —27m29(;+(n1, n2)

where AAFE(n1,n2) = (AFE(n1,n2)) — AF*(n1, np), while the zero modest;*(0, 0)
transform as

AAT(0,0) = 27k, AA*(0,0) = 27ks. (16)

These different expressions thus nicely establish that small gauge transformations—
generated by the first-class constrapiik )—modify only the non-zero modes and that large
gauge transformations only affect the zero modes of the gauge conndgtion Turning
the argument around, one thus concludes that the system factorizes into two types of degrees
of freedom, namely the non-zero mod&ﬁi(rzl, ny) (n1 # 0 orny # 0) directly related to
small gauge transformations only, and the zero megég0, 0) directly related to large gauge
transformations only. Moreover, the above expressions also show that it is always possible
to set half the non-zero modes to zero by an appropriate small gauge transformation, namely
either thei = 1 or thei = 2 component for each of the modﬂ$i(n1, ny) (the choice of
which of these two components is set to zero is left open for the modes witl pettd and
ny # 0, but not for those modes for which eithgr= 0 orn, = 0). Consequently, invariance
under small gauge transformations implies that the physical content of the system actually
reduces to that of its zero-mode sectgt* (0, 0) (i = 1, 2) only, while the physical content
of its non-zero-mode sector is gauge equivalent to the trivial soluigii) = 0 to the flat
connection conditioF1,(¥) = 0 associated with the vanishing holonomigs k,) = (0, 0).

That the physics of these systems lies entirely in their zero-mode sector remains valid at the
quantum level as well, as is shown hereafter (in fact, this conclusion also extends to Riemann
surfacesz of arbitrary genus and for any choice of non-Abelian gauge g@{@, 11-14]).

Anidentical separation also applies to the modes of the gauge parameter f@rigtiof).

As shown above, the terrf2rkix! + 2rk,x?) corresponds to large gauge transformations
only, while the contributiordy(x, x°) induces small transformations only, whose zero mode
657 (0, 0) in fact completely decouples. Indeed, the latter mode corresponds to a global phase
transformation, which for the real degrees of freedéptx, x%) stands for no transformation

at all. In other words, in as far as the small gauge parameter fur@i®nx®) is concerned,

one could say that its zero moég* (0, 0) has, in fact, been traded for tiie, k») parameters
characterizing the holonomies of a large gauge transformation. The zerog§ig@e0) for

small gauge parameter functiofig(x) thus does not enter our considerations in any way
whatsoever, and may always be set to zero. Finally, let us simply point out also that the range
of each of the non-zero modé{;“i(nl, ny) is the entire real line, running fromoo to +oo (as
opposed to the zero modg* (0, 0) which would have taken its values in the interval @],

for example, had it contributed to gauge symmetries of the system).

It may appear that by using the mode expansion (10), the gaugeAfietd is assumed
to obey periodic boundary conditions, which would amount to implicitly assumingth)
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defines a vector field ove, rather than a possibly non-trivial section ot/41) bundle over

T, the latter case being associated with the possibility of twisted boundary conditions for the
componentsA; (X) [20]. However, the local trivialization of in terms of the coordinates

0 < x%, x? < 1 does not define a complete coveringToef which requires at least?2= 4
different overlapping coordinate charts. Moving from one chart to another implies that the
gauge connectiom, (¥) also changes by gauge transformations which include large ones
associated with twisted boundary conditions. Therefore, by explicitly considering in our
definition of the gauge-invariant system large gauge transformations, the possibility of twisted
boundary conditions is implicitly included, and the above Fourier mode decomposition of the
phase space degrees of freedapi) is fully warranted.

4. Dirac quantization

Given the above mode decompositions of the Hamiltonian formulation of the system
defined over the torugd>, its canonical quantization proceeds straightforwardly through
the correspondence principle according to which brackets now correspond to commutation
relations being set equal to the value of the bracket multiplied:byThus, given (12), the
fundamental quantum operators are the mo&%%(nl, ny) such that

n R 2in
[Afi(nls 112), Azzti(mlv mZ)] = Ffii(nlv n2)3111,n113nz,1712 (17)
k

with in particular for the zero modes,

R A . h
[A77(0,0), A37(0,0)] = |2—Nk. (18)
Henceforth, we shall thus assume explicitly thiat> 0, with the understanding that the case
whenN; < 0 is then obtained simply by interchanging the roles of the coordindtasdx?.

Itis already possible at this stage to determine the number of quantum physical states [6].
Indeed, the relations (15) and (16) show that the actual gauge-invariant phase space degrees of
freedom are the zero modas* (0, 0) defined up to integer shifts byr2 while half the non-zero
modes—either thé = 1 or 2 component, depending on the given mode—may be set to zero
through small gauge transformations. In other words, the actual physical phase space of the
system is a two-dimensional torus of voluig2er )2, an instance of a phase space which is not a
cotangent bundle as is usually the case but rather a compact manifold. The quantization of the
system thus amounts to quantizing this two-dimensional torus, with the commutation relation
(18) in which”” = h/(2N;) plays the role of an effective Planck constant. In particular, the
total number of physical states is thus given by the voli#e? of phase space divided by
that of each quantum cel®r7’) for the degree of freedom;* (0, 0), namely

S
2n(h/2Ny)

Consequently, the normalization fact®f ought to be quantized with a valwé, = ik /(4r)
to be associated with physical statesk(= 1, 2, ...). Precisely this quantization condition
is established hereafter by considering large gauge transformations of the system; this
gquantization condition will then be specified further later on when considering modular
transformations of the underlying tor{s, which then require the integérto also be even.

The above commutation relations for the mod%‘%t(nl, ny) define an infinite tensor
product of Heisenberg algebras. In order to set up a coherent-state representation through
creation and annihilation operators associated with this Heisenberg algebra, it is necessary to

Ny. 19
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introduce a complex structure on the initial base manifgld The necessity of introducing
some further structure oi beyond the purely topological one is also unavoidable in all other
quantization frameworks for Chern—Simons theories [6]. In fact, all other approaches require
a metric structure o&x, while it is then shown that the quantized system nevertheless depends
only on the complex structure (or conformal class of the metrick pwith the space of gauge-
invariant physical states providing a projective representation of the modular grauipwé
to a quantum conformal anomaly [6]. This is how close a topological quantum field theory
may come to being purely topological. In the present approach, the necessity of introducing a
complex structure oveX is thus seen to arise from a coherent-state quantization of the system,
while, in contradistinction to other quantization methods, it is also gratifying to realize that
no further structure is required within this approach since the quantized system should in any
case turn out to be independent of any such additional structure.

On T3, a complex structure is characterized through a complex parametet; + it
whose imaginary part is strictly positive,( > 0), with the modular grougP SL(2, Z) of
transformations generated by : © — t+ 1) and(S : © — —1/t) defining the classes
of inequivalent complex structures under global diffeomorphisni& irAssociated with the
complex parametrization,

z=xt+1x? dzdz = |dx' + 7 dx?|? = (dx)? + 211 dx b dx? + |7]%(dx?)? (20)
the gauge connection 1-form reads as

A =dxA; +dx?A, = dz A, +dZ A: (21)
with

A=olfh=A) A= —5olrhi- Al (22)

Given the choice of complex structure parametrized bthe annihilation operators for
the quantized system are defined by

1 N, N A
aFE(ng, np) = \/mf; [—WA:fi(nL nz) + |A§i(’117 nz)] (23)

with the creation operatons‘tiT(nl, n,) simply defined as the adjoint operatoradft (n1, n,).
One has

[aii(nla n2)a aiiT(ml’ m2)] = anl,m18n2$m2 (24)

while the annihilation (respectively, creation) operators clearly correspond, up to
normalization, to the Fourier modes &f(z, ) (respectivelyA, (z, 2)).

An overcomplete basis of the space of quantum states is then provided by the coherent
states,

1,4+ 2tk +xt
|Zii(l’l1, ny)) = @ 3|a7 (n2)|” 27 (1, n2)a™= (ny,n2) |0) (25)
with the following representation of the unit operator:
dzt* (1, n2) A dz¥E(nq, no)
1= f [T11 = I 5 () (2 (11, ) (26)

++ ny,n2 0

wherez** (n1, n,) are arbitrary complex variables aj@ is the usual Fock vacuum normalized
such that(0|0) = 1. In particular, the gauge-invariant physical states of the system are
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those superpositions of these coherent states which are annihilated by the first-class operator
43(55), namely by all the modeéﬂ(nl, ny). However, this restriction does not yet account
for invariance under large gauge transformations, which are not generated by the constraint
operatorp(¥), a further specification to be addressed in the next section.

One could now proceed and solve for the physical-state condifiohgy) = 0 in terms
of the above mode decompositions. However, we shall rather pursue the physical projector
path, which will enable us to solve these conditions by at the same time also determining the
wavefunctions of the corresponding physical states, and including the constraints which arise
from the requirement of invariance under large gauge transformations as well. Nonetheless, let
us note that the resolution of the physical-state condiifgi3|y/) = 0 has been given in [11]
precisely using the functional coherent-state representation of the algebra of the field degrees of
freedom, to which we shall thus compare our results. The approach of [11, 12], however, uses
the formal manipulation and resolution of thenctionaldifferential equations expressing the
physical-state conditions in the coherent-state wavefunction representation of the commutation
relations for the field operator, (z, 7) and A:(z, 7). By working rather in terms of Fourier
modes as done here in the case of the td@iyssuch formal manipulations are avoided by
having only adiscreteinfinity of such operators, thus leaving only the much less critical issue
of evaluatingdiscreteinfinite products of normalization factors for quantum states, for which
¢-function regularization techniques will be applied (since other regularizations would require
some physical scale, and hence some geometry structure to be introdugd on

5. The physical projector

In order to construct the physical projector, which in effect projects out from any state its gauge-
variant components by averaging the state over all its gauge transformations and thereby only
leaving its gauge-invariant components [7], let us first consider the operator which induces all
finite small gauge transformations, namélydy) = exp(i/i sz d?% 6o(X)(¥)). In terms of

the previous mode representations and definitions, one finds

V ]’lj\sz I, d2x 90(x)¢(x) j— Z +7’l290 (0 nz)a++(0 nz)]

ny=

1
2«/_,112 —n176y " (n1, 0)a ™ (ny, 0)]
: Z —n265" (0, n2)a™™ (0, n2)|
2«/_

2«1}_ Z +n1765 " (n1, 0™ " (ny, 0)]

+o0  +00

+3 2D (#2605 (11, n2) — 76y ™ (n1, n2))a™ (n1, n2)]

ni=1lny=1

+o0  +00

3 Z (—n2bg" (n1, n2) — maT6G ™ (n1, n9))a™ (n1, n)]

ni=1lny=
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+o0  +00

+3 D (265~ (11, n2) + naz05™* (na, n2))e* (n1, n)]

ni=1lny=1

+00 +00
+‘—l1 Z Z[(—n205+(n1, ny) + nlfeg_(nl, nz))a”(nl, }’lz)] + [h.c.]. 27)
ni=1lnp,=1
Note that, as it should, the zero ma#§é (0, 0) of the gauge parameter functiés(x) does
not appear in this expression, and that the zero-mode opeﬁdﬁﬁ%(o, 0) do not contribute
either, showing once again that only small gauge transformations are generated by the first-
class constrainp (x). Moreover, it is possible to verify that the commutators of the quantity
in (27) with the modesﬁiﬁ(nl, ny) do reproduce the expressions in (15), while leaving the
zero modesii“(o, 0) invariant, since we have, using the property in (43),
N n N R i A
U (60) A (n1,n2) U™ (00) = A;*(n1, np) + [ﬁ &?% 60()$(X), A7 (na, nz)]- (28)
T2
To determine how to construct the operator which generates the large gauge
transformations characterized by the holonomies k»), let us consider the zero mode
AI*(0,0) (a similar analysis is possible based ati*(0, 0)), whose gauge transformation
is given by (see (16) and (22))

AAT(0,0) = —2'—T2 27 [tky — ko, (29)

Consequently, the associated annihilation operatd¢0, 0) should transform according to

N ~ . N,
U (k1, k2) @** (0, 0) U (ky, k2) = (0, 0) — 2in }—l—k [Tky — k2] (30)
\ Atz

where U (k1, ko) stands for the operator generating the large gauge transformation of
holonomiegk, k»). Therefore, we must have

A 2ir RN
U(kl,kz)=C(k1,kz)exp[% T—Zk{[fkl—kz]a”(o,0)+[fk1—k2]a++*(o,0)}} (31)

whereC (ky, k2) is a cocycle factor to be determined presently such that the group composition
law is obeyed for large gauge transformations,

U1, £2) Uk, ko) = Uty +ka, Lo + k). (32)
Since—using the property in (43)—the latter constraint translates into the cocycle condition
e W NIRRT € (1, £5) Clka, k2) = CE1 + ke, L2+ ko) (33)
a careful analysis shows that the unique solution to this cocycle condition is
3 _
Ny = —k C(ky, kp) = emkhke (34)
4
wherek = 1, 2, ..., is some positive integer value. This specific result for the normalization

factor N, will thus be assumed henceforth.

These results therefore establish that consistency of the quantized system under the action
of large gauge transformations in its zero-mode seél;b‘r(o, 0) requires the quantization
of the normalization factoWN, in precisely such a manner that a totalko§auge-invariant
physical states are expected to exist within the entire space of quantum states generated by
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the coherent states constructed above. In addition, the opéi’ak@rkz) associated with
the large gauge transformation of holonortty, k2) is thereby totally specified, while the
operatorU(@o) = expi/h fT d2x 90(x)¢(x)) associated with small gauge transformations of
the parameter functiofy(x) is defined in (27).

Consequently, the projector onto gauge-invariant physical states should simply be
constructed by summing over all small and large gauge transformations the action of the
operatorsU (6p) and U (ky, k2) just described. Even though this is straightforward for the
large gauge transformations, the summation over the small ones still requires some further
specifications [7], stemming from the fact that the spectrum of the non-zero modes of the
gauge constrainp(¥) = 0 is continuous. Since, as was seen previously, the small gauge
invariance is such that half the non-zero moetéiét(nl, ny) (n1 # 0 orny # 0) may be set
to zero, the other half being their conjugate phase space variables, let us discuss this specific
issue in the following much simpler situation.

Consider a single-degree-of-freedom system with coordipated conjugate momentum
p, both Hermitian operators, whose commutation relation is the usual Heisenberg algebra
[¢. p] =1, and subject to the first-class constraint 0. Asthe spectrum of this latter operator
is continuous, the proper definition of a projector onto the states satisfying this constraint
requires us to consider rather the projector onto those states \§reigenvalues lie within
some interval £4, 8], 8§ > 0 being a parameter whose value may be as small as required [7].
The latter projector is expressed as

8 Yoo .. SiNES
Bi=E[-5<q<d= [ dylgal= [ eI
-8 —00 7[5}.
assuming that the position eigenstates are normalized suclytii@l) = 5(qg1 — ¢2). By
construction, one has the required properties,

(39)

However, one would rather wish to consider the operator singling ougthe0) component
of any state, namely,

Eo =g =0){g =0|. (37)
Even though this operator is indeed Hermitian, it is not strictly in involution since one has
EZ = §(0) Eo. (38)

In other words, since the position eigenstates ofghmperators are non-normalizable, the
operatof, does not define a projection operator in a strict sense, since even though it projects
onto the|lg = 0) component, it thereby leads to a non-normalizable state satisfying the
constrainty = 0. Nevertheless, the non-normalizable proje@igmay be constructed from

the well defined on&; through the following limit:

Ciim L= [T
Mﬂm%m_[mhe‘ (39)
Hence, associated with the choice of normalization of position eigengjales = 5(g1—q2),
the non-normalizable projectéi onto the states such thaty) = 0 is simply represented by
the integral operator on the right-hand side of this last identity.

Transcribing these considerations to #i€l) Chern—Simons theory, it should be clear
that the (non-normalizable) projector onto the (non-normalizable) gauge-invariant physical
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states of the system is simply given by (recall that the mégie®, 0), 6, (1, 0), 65" (0, n),
6, ~ (n1, 0) andéy ~ (0, np) are non-existent)

+00 R +00 d@:t:t , R
Eo = Z U (k1, k2) 1_[ 1_[ / % U(6o). (40)

kq,kg=—00 ++ ny,no

Note that this physical projector also defines the physical evolution operator of the system, since
the first-class Hamiltonian operator vanishes identicaly= 0, a consequence of invariance
under local coordinate transformationssin

6. Gauge-invariant physical states

The set of physical states of the system should now be identifiable simply by applying the
physical projectoEg onto the entire space of states representing the operator algebra of modes
AF*(ny, np). Working in the basis (25) of coherent state$*(n1, n,)), this is tantamount

to considering the diagonal matrix elemett$® (n1, n,)|Fo|zT (11, n2)), since these matrix
elements simply reduce to a sum of the physical-state contributions as intermediate states,
namely,

(2" (n1, n2)[Bolz** (n1, n2)) = Y _(2**(n1, np)|r) (rlz** (n1, n2))

=" |rle** (1 n2) (41)

wherer is a discrete or continuous index labelling all physical states (only a finite nundder
which are expected, of course). Therefore, when having obtained an expression for the diagonal
matrix elementsz** (n1, ny)|Eo|z** (n1, np)) as a sum of modulus-squared quantities, the
physical states of the system together with their coherent-state wavefunction representations
are readily identified up to a physically irrelevant phase factor, knowing that except for the
factor =" (n.n2*/2 for each mode stemming from the normalization of the coherent states,
the wavefunctiongr |z** (n1, n)) are necessarily functions of the varialtés (14, n5) only,
but not of their complex conjugate valugs® (n1, n,). Had the system possessed some global
symmetry beyond th& (1) gauge invariance, the associated different quantum numbers of the
physical states could have been used to label them, thereby making it easier to identify them
as well as their wavefunctions from the above matrix elements suitably extended to include
the action of the global symmetry generators [9]. Note also that trying to extract the same
information—beginning with the number of physical states—from the partition functid@y Tr
would be problematic. Indeed, that latter quantity is ill-defined since neither the physical states
|r) nor the physical projectdiy are normalizable quantities.

Given that the exponential arguments appearing in the definition of the gauge operators
0(490) and f](kl, ko) are linear in the creation and annihilation operatm‘fsl“ﬂ(nl, no),
the explicit evaluation of the above diagonal coherent-state matrix elements of the physical
projectorEg is rather straightforward even though not immediate for the modesmwith O
andn, # 0. Let us only give the outline of the calculation for the modes with= 0 or
n = 0. The calculation for the modes with # 0 andn, # 0 is similar but involves some
matrix algebra since the integrations o¥gf (n1, n2) andd, ~ (n1, n2), on the one hand, and
93* (nq1, n2) and95+(n1, ny), on the other, are coupled to one another in each case.

Consider again a single-degree-of-freedom system with creation and annihilation operators
a' anda, respectively, such that[a'] = 1, together with the associated coherent states

z) = e 2" e |0) (zlz) =1 (42)
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where|0) is the usual Fock vacuum normalized(@f) = 1. Using the identity
eMB — g 3lABl gt g8 (43)

valid for any two operatord and B which commute with their commutatoA| B], as well as
the obvious properties that

alz) =zlz) e |z) = 7 |z) (44)

wherei andé are arbitrary real and complex variables, respectively (in keeping with the
notation in (27)), one readily concludes that diagonal coherent-state matrix elements of an
exponential operator whose argument is linear in the creation and annihilation operators are
simply given by

<Z|eix[9a+§af] Iz) = e—%,\2|9|2 eiw'z eiwz' (45)

Consequently, in the case of the matrix elemefatst(n1, no)|Eo|zt* (11, n2)), the
integrations over the discrete infinite number of non-zero m(ﬁg’é‘i(nl, ny) (np # 0 or
ny # 0, or both) for small gauge transformations simply correspond to Gaussian integrals for
each of these contributions, whose results are then multiplied by one another. As mentioned
previously, the ensuing discrete infinite products of normalization factors are handled using
¢-function regularization techniques, rendering these products well defined. Moreover, the
discrete infinite products of the remaining Gaussian factors may be expressed as a simple
exponential whose argument is given by the integral over the ®rofa local quantity built
from the modes** (n1, n,) defining the coherent stategt* (11, n,)) for which the diagonal
matrix element is evaluated.

Similar considerations apply to the contribution from the zero-mode sgti@, 0), but
the summation over the holonomiés, k») is such that no clear separation of terms in the
form of (41), corresponding to the separate contributions of the distinct physical states, appears
to be feasible. In fact, the evaluation of the zero-mode sector contribution to the relevant
matrix elements requires an entirely different approach, which is detailed in the appendix and
uses different representations of the zero-mode algebra (18). In particular, it is shown in the
appendix that the total number of physical states is indeed equal to the value of the integer
k which quantizes the normalization fact®y in (34), so that the index introduced in (41)
takes the following finite set of values= 0, 1, ..., (k — 1).

In order to give the final result of all of these calculations in a convenient form, let us
introduce the following quantities associated with the complex parametélay, n) (see
(22) and (23)):

47
AT (n1,np) = \ S5 (1, n2) k—TZZii(nl’ n2) (46)

thereby determining a specific functietz (z, z) through its mode expansion. In turn, let us
then introduce the further modes defined in terms of those @f, 7),

(s ng) = T2 —n2Al" (n1,n2) — n1t A" (n1, na)
o) =
b

2.2 _ 2
nite —nj

Ty AT (n, np) — niTAZ T (ng, n2)

X+7(I’l1, n2) =I1— 2 2
T n5t? —njg 47)
_+ T 1T AT (n1, n2) — n2AZ " (n1, n2)
X (ny,np) =i—= 53
T nlf - n2

__ Tp 11T AL (n1, n2) + naAZ " (n1, na)
X (ni,np) = — :

2.2 _ 2
nité —n;
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with again the understanding that the zero mgd&(0, 0) = 0 is taken to vanish, and that
the would-be non-zero modes ™~ (n1, 0), x ~*(0, n2), x " (n1,0) andyx (0, np) (n1,nr =
1,2,...) do not appear in the mode expansions.

Correspondingly, the modes of the functidag (z, z) andad, x (z, z) are such that on the
one hand

dx(z,2) = Az(z,2) — AT7(0,0) (48)

namely that all modes @ x (z, ) except for the zero mod@: x)*™* (0, 0) = 0 coincide with

the corresponding ones df;(z, z), and on the other hand, the non-zero modes, giz, 7)
are given by

1 o
(0:0)™ (n1,n2) = 272 _ 2 {[n3IT1? — n3) AT* (n1, n2) + nana(t — T)A;~ (n1,n2)}

1 ny

-1 _ o
(%) (n1,n2) = e {[n217]1? — n3] AL~ (n1, n2) — nana(t — ©) AT (n1, np) )
1

(49)

-1 R _
@)™ (non2) = a5 {=nina(t = DAL (n1,n2) + [nf|e | — n3] AZ" (n1, n2))

00) 7 (11,12) =~ {#mna(t = DAL (3, n2) + [ndl7 ) —n3] A7~ (ma.m2)}

1 2

An important identity that the modes of the functigriz, 7) satisfy is the functional
relation

9z (0 x) = 9:Az = 9 (3 x). (50)

In terms of these different quantities, finally the coherent-state wavefunction for each of
thek physical stateg) of the system s given by (=0, 1,2, ...,k — 1),

(rlAz(z, 2)) = (r|z** (11, n2))

_ g umzn(arooy L o[ /K (KT g o)
n(7) 0 o

ik
X exp[—a dz A dz |Az(z, Z)|2}

T
ik
xexp[;—n T dZ/\dfazx(z,Z)azX(z,Z)} (51)
2

wherey (1) isthe Dedeking-function,n = €77/12[ > (1 — €?™7), ® is the toru®-function
with characteristics whose definition is given in the appendix, while the physically irrelevant
overall phase factor is set to unity. Note that in the last two exponential factors, the integral
Jz,dz A dZ]Az(z, 7)|? does include the contribution expkt,|AZ*(0, 0)[%/(27)) from the
zero-mode componem?*(0, 0) of the coherent statg**(n1, n)), in contradistinction to
the second integr:;j[r2 dz A dz 9; x (z, 2)9. x (z, Z) which only includes contributions from the
non-zero modes\=* (ny, np) (n1 # 0 orny # 0). This point is important when checking
gauge and modular invariance properties of these physical wavefunctions.

These wavefunctions coincide with those established in [11] by using a functional
representation of the commutations relations of the field degrees of freég@min order to
solve for the physical-state conditigiit) = 0 as well as requiring invariance under large gauge
transformations. This identity of results thus demonstrates that the physical projector approach
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is indeed capable, without any gauge-fixing procedure whatsoever and thereby avoiding the
possibility of any Gribov problem, to properly identify the actual gauge-invariant content of

a system, even when this requires the projection down to only a finite number of components
from an initially infinite number of states.

By construction, the states whose coherent-state wavefunctions are given in (51) are
invariant under both large and small gauge transformations. However, this property does
not necessarily imply that the wavefunctions themselves are invariant under arbitrary gauge
transformations of the variables; (z, 7). To make this point explicit, let us consider the
gauge transformations of the physical states, whose invariance should thus imply the following

identities:
U~Y60)|A:(z,2)) = (r|A:(z, Z
<r|A l( 0)|Az(z, 2)) = (rlAz(z, 2)) (52)
(rlU™"(k1, k2)|Az(z, 2)) = (r|Az(z, 2))

valid both for small and large gauge transformatioiso) andU (k1, k») whatever the values
of their mode®);™ (n1, n) or their holonomiesky, k).

In the case of small gauge transformations, a careful analysis of the contributions to the
relevant matrix elements establishes the result,

dz A dz [0z 0,60 — 329032_)(]1| |Az(z, 2) + 0z60(z, 2))
(53)

-1 - ik
U™ (00)|Ax(z, 2)) = exp ——
T

T

as well as
ik _
(rlAz(z, 2) + 9:600(z, 2)) = eXp[—E dz A dZ[(Az — 9:x)3.60 + :00(Az — azX)]]
T

x(r|Az(z, 2)) (54)

whereA:(z, 7) + 9; x (z, z) stands for the transformations of the moelg"s‘t(nl, n,) under the
small gauge transformatid#ig(x) of modes90ii(n1, ny), with of course the understanding that
the zero modei!*(0, 0) is left invariant.

Combining these two relations and using the identity in (50) after integration by parts in
the exponential factors (to which the zero medé(0, 0) does not contribute), the first identity
in (52) then indeed follows, thereby confirming gauge invariance of the physical states under
small gauge transformations.

Similarly for a large gauge transformatid)}(kl, k>) of holonomiegky, k), one finds,

A _ H _ 1 _INATT O O)- z_ ++
U_l(k]_, k2)|Az(Z7 Z)) — elﬂkklkz %) 2Ik[(kl‘r k2)AZ7(0,0)+(k1T—k2) Al (0,0)]

_ i
x|Az(z,2) — T_Z(Tkl — k2)> (55)
as well as
i : R A0 N = ++
(r|A:(z,2) — ,—:(rkl — kp)) = & Thake @Ik(aT k) AT Q.0+ (T kAT OO (11 4. (2, 7)) (56)

where this timeA;(z,7) — in(tky — k2)/12 Stands for the transformation of the modes
Azﬂ(nl, n2) under the large gauge transformation of holonongiesk,) which of course
affects only the zero moda;"(o, 0) by the indicated constant shift linear i3 and k,.
Consequently, these two relations also lead to the second identity in (52), thereby establishing
gauge invariance of the physical states under large gauge transformations as well.

These relations also demonstrate that in spite of the gauge invariance of the physical
states|r) (r = 0,1,...,k — 1) under small and large transformatiori$(6o)|r) = |r)
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and U (k1, k)|r) = |r), their coherent-state wavefunctiofigA:(z, 7)) are not invariant by
themselves under the simple substitution of the gauge variation of their argument),
namely the variations\’(z,z2) = A:(z,2) + 0:x(z, 2) for small gauge transformations and
A%(z,2) = A:(z, 7) — im(tky — k2) /72 for large ones.

Let us now turn to the issue of modular invariance of the physical content of the quantized
system. If indeed this content depends only on the complex structure—parametrized by the
variabler—as the only structure necessary beyond the mere topological one of the underlying
torus 7», the spectrum of physical states should remain invariant under the modular group
PSL(2,Z) of T, which is generated by the transformations

1
T: t—>1+1 S:t—> ——. (57)
T

Indeed, these transformations correspond to global diffeomorphisms, namely Dehn twists, in
the local trivialization off, characterized through the choice of holonomy basig)and the
associated coordinatesfx?, x2 < 1, and these modular transformations define equivalences
classes for the values efwhich correspond to a same complex structure (or conformal class)
on7Ts.

An explicit analysis of the transformation properties of the physical wavefunctions (51)
shows that the requirement of invariance of the physical content of the system under the
modular transformation is met only if the integealso takes an even valsee the appendix)

[11], in which case one finds

T: (rlA:(z,2) — €726/ (r]A:(2, 2)). (58)

On the other hand, invariance under thenodular transformation is realized through the
transformations

1 -
S:t1—>T=—-= AI*(0,0) - AI*(0,0) = —TA{(0,0) (59)
T

while the non-zero modeA;Li(nl, ny) are left unchanged, in which case one has (see the
appendix),

>~
=

~ — 1
St rlA: @ D) = Az D)e = ) =@ (A 2. D). (80)
r'=0 \/E
Hence, in addition to the quantization conditi?fy = 7%k/(4x) imposed on the

normalization factowv, by the requirement of invariance under large gauge transformations,
modular invariance of the theory also requires that the intedpereven [11]. In this case the
space of quantum physical states does provide an irreducible representatiofainthaéular

group, showing that the physical content of the system does indeed depend only on the choice
of complex structure (or conformal class) By characterized through the equivalence class
under the modular group of the parameateNevertheless, physical states are not individually
modular invariant, but rather they define a projective representation of the modular group. This
is how close the quantizdd(1) Chern—Simons theory is to being a purely topological quantum
field theory, the dependency on a complex structur@:ofollowing from the existence of a
conformal anomaly at the quantum level [6].

7. Conclusions

This paper has demonstrated that the new approach to the guantization of gauge-invariant
systems [7], based on the physical projector onto the subspace of gauge-invariant states, is
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perfectly adequate to handle the intricacies of topological quantum fields theories, in which
only afinite set of physical states is to remain after the infinity of gauge-variant configurations
has been projected away. This new approach to the quantization of constrained systems does
not require any gauge-fixing procedure whatsoever and is thus free of any potential Gribov
ambiguity in the case of gauge symmetries [8], in contradistinction to all other quantization
frameworks for gauge-invariant systems. Another ofits advantages is thatthe physical projector
approach to the quantization of such theories is directly set simply within Dirac’s formulation,
where it finds its natural place. In particular, the physical projector enables the construction
of the physical evolution operator of such systems, to which only physical states contribute as
intermediate states, so that the physical content may be identified directly from the matrix
elements of that evolution operator, including the wavefunctions of physical states. For
topological field theories, since these systems are invariant under local diffeomorphisms in
the base manifold, their gauge-invariant Hamiltonian vanishes identically, in which case the
evolution operator coincides with the physical projector.

More specifically, the physical projector approach was applied t&/tti¢ pure Chern—
Simons theory in 2 + 1 dimensions in a space whose topology is thiatof», whereT is
an arbitrary two-dimensional torus. Through a careful analysis of the quantized system, of
the relevant physical projector, and in particular of the specific discrete infinite mode content
of the system, it has been possible to identify and construct the physical spectrum and the
coherent-state wavefunctions of the gauge-invariant states, leading to results which are in
complete agreement with those of other approaches to the quantization of the same system
[6, 11-14], while also avoiding some of complications or formal manipulations inherent to
these other approaches. The only more or kdshocbut unavoidable feature which is
introduced in our analysis is that the discrete infinite products—rather than continuous ones as
occurs in functional representations—of Gaussian normalization factors have been evaluated
using¢ -function regularization, which avoids having to introduce any other structure on the
underlying two-dimensional Riemann surface beyond those associated already to the topology
and complex structure (or conformal class) of that surface. This is in keeping with the fact that
the quantized theory only depends on that complex structure but no other structure beyond it
(even when one is introduced, namely through a metric structure [6]), while also a dependency
on the complex structure rather than purely the topology of the underlying manifold is the
unavoidable consequence of the quantization of the system [6]. In particular, it was shown
how gauge invariance under large gauge transformations implies a quantization rule for the
overall normalization of the classical Chern—Simons action in terms of an integer equal to the
number of physical states, which in turn is also required to be even for modular invariance
to be realized [11]. When both these restrictions are met, the quantized system indeed only
depends on the complex structure introduced on the underlying Riemann surface.

These systems are also distinguished by the fact that their physical phase space is a
compact manifold, in the present instance with the topology of a two-dimensional torus,
which is in contradistinction to the ordinary situation in which the phase space of a given
system is a cotangent bundle. Usually, geometric quantization techniques are then invoked in
order to address the specific issues raised by a phase space having a compact topology [21].
Nevertheless, no such techniques were introduced here, but rather by properly identifying
the operator which generates the transformations responsible for such a compact topology
of phase space—in the present instance large gauge transformations—it was possible to
properly represent the consequences of such a circumstance using straightforward coherent-
state techniques of ordinary quantum mechanics. Clearly, similar considerations based on the
construction of the relevant projection operator are of application to any system whose phase
space includes a compact manifold which is a homogeneous cosetGpHaGavhereG and
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H are compact Lie algebras. From that point of view, it may well be worthwhile to explore
the potential of the physical projector as an alternative to geometric quantization techniques.
The physical projector approach is thus quite an efficient approach to the quantization of
gauge-invariant systems, which does not require any gauge-fixing procedure whatsoever and
thus avoids the potential Gribov problems inherent to such procedures. Some of its advantages
have been illustrated here in the instance of th&) Chern—Simons theory, as well as for
some simple gauge-invariant quantum mechanical systems elsewhere [9, 10]. Hence, itappears
timely now to start exploring the application [22] of this alternative method to the quantization
of gauge-invariant systems of more direct physical interest, within the context of the recent
developments surrounding M-theory compactified to low dimensions, and aiming beyond that
towards the gauge-invariant theories of the fundamental interactions among the elementary
quantum excitations in the natural Universe.
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Appendix

This appendix outlines the calculation of the contribution of the zero-mode sector to the
coherent-state diagonal matrix elemeRts- (n1, n,) |Eo|zF* (11, n2)) of the physical projector
operator, namely the quantity

+00 +00

Z (Z|0(kl, ko)|z) = Z (z|gkkike ei\/m{[fklsz]aﬂrklsz]af}|Z>. (A1)

k1,kp=—00 k1,kp=—00

Here,z, « anda " stand of course for the zero-mode sector only, with the obvious understanding
thatusualindices distinguishing these zero modes, suchi@s 0), are not explicitly displayed
in this appendix.

Since the evaluation of these matrix elements requires changes of bases for different
representations of the associated quantum algebra, let us recall here the relations between the
different quantum operators appearing in this sector of the system. One has the definitions

1]k A 1/ k (o~ .4
o = E 7'[_'[2 [—|'L'Al + |A2] OlT = é T[—Tz [|'L'A1 — |A2] (AZ)

while the corresponding commutation rules are
A A 2i
[A1 A = T” [w,af] =1 (A3)

with the implicit understanding that both; and A, are Hermitian operators. Using these
relations as well as the identity in (43), large gauge transformations also read as

0(k1 kz) — ei]tkklkz eik[klz‘iszgAAl] — eikklAZ e*ikaAl. (A4)

Since the algebra for the modés andA; is that of the usual Heisenberg algebra, with
playing the role of the configuration-space coordinatenthat of the conjugate momentum
variable, it is clear from the last expression above of the opeidiét, k,) in terms of



The physical projector and Chern—-Simons theory 1049

these modes, that the mixed configuration—momentum-space matrix eIemefmslokg)
are readily obtained. Hence, let us develop the different representations of the commutations
relations (A3), namely the configuration space, the momentum space and the coherent state
ones.

Configuration and momentum-space representations correspond to eigestatesd
|A2) of the A; and A, operators, respectively,

A1lA1) = A1|A1)  AglAz) = AzlAd) (A5)
whose normalization is chosen to be such that
(A1|A}) = 8(A1 — A} (A2]AY) = 8(Ax — AY) (AB)
to which the following representations of the identity operator are thus associated:
+00 +00
1 =/ dA; A (A, 1 =/ dA2 | Az)(Agl. (A7)
—00 —00

Since the factok” = 2/ k plays the role of an effective Planck constant, itis clear that the
configuration-space wavefunction representations of the two oper&t@sd A, are simply,

2ir 0

(Ardaly) = A(AY)  (AdlAaly) = === —— (Aaly) (A8)
1
and for the momentum space wavefunction representations,
A 2ir 9 N
(A2l AslY) = & 94, (A2l¥) (A2]A2lY) = Az (A2l¥). (A9)

In particular, given the above choice of normalization, we have for the matrix elements
expressing the corresponding changes of basis,

k : k
(An|Ag) = ;/_; —(ik/27) A1 A2 (A1l Ap) = ;/_; o ik/2m) A1 A7 (A10)

Let us now consider the Fock state representation of the same quantum algebra, whose
set of orthonormalized basis vectors is thus defined by

1 n
n) = —(")"10) (A11)
77 @)
where|0) is of course the Fock vacuum normalized such @) = 1. Given the above
configuration-space representation, the configuration-space wavefunctions of the Fock basis
vectors are easily constructed. For the vacuum, one finds from the condifpn= 0,
including proper normalization,

kto ba 2
<Al|0) — <ﬁ) e(lk/47r)rA1 (A12)
while the excited Fock states are such that

ko \Y* 1 it "2 d7" e [ikz

In order to solve for these latter expressions, let us introduce polynoRyi@glsi) generalizing
the usual Hermite polynomials, and defined by the generating function
+00 tn
e’%(l”)’zﬂlﬂ)’” — Z — Py(u; M) (A14)
— n! ’
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wherea is a complex parameter. These polynomials satisfy the following set of properties:

Po(u; 1) = ez’ |:u - i] g 2’ (A15)
du
Poi(u; M) = A +VDuP,(u; )) — diP,,(u; A) (A16)
u
Po(u; M) =1 Pi(u; M) = (1 +0)u. (A17)

Hence, finally, one finds

ke \Y* 1 it " 2 ikt —it
A — [ 222 i B glikt/4m) A7 P, KA R AL8
(A1ln) (an) Nl <2r2> oy AL T2 (A18)
Similarly for the momentum wavefunctions, one has
kry \Y* (=) (N2 e k iz
A = — glk/imDAz p, — Ay, — ). Al9
e = (i) 7ot (e 27 A% i (A19)

Finally, let us consider the coherent-state basis,

1.2 dz A dz
Iz2) = e 2P g’ |0y ]l:/ Zn < lz)(z|. (A20)
Using the relations
_ _ B e
olz) = zlz njz) = —e€ 2 A21
|z) z) (n|z) 7 (A21)

as well as the above generating function for the polynomfale; 1) which appear in the
matrix elementgA;|n) and(A;|n), the following results are readily obtained:

1/4
(A1]z) = <%) e—%lz\z e(ikt/4rr)A% e—%zzﬂAlW (A22)
JT

kt 14 - _—
(Aslz) = <2n2—|i|2) e—%\zlz e(k/4|rrr)A§ e%(Ir/—lr)zz+(zA2/r)~/kr2/rr. (A23)
Having established these different changes of bases, let us return to the evaluation of

the matrix element (A1). Obviously, given (A4), the mixed configuration—-momentum space
matrix elements are simply

+00 " +00 \/% ) ) )
(Aol Y Utk kp)lAr) = Y o= ethitzgitehigrtl/znm:, (A24)
Ky k= —o00 koo 2

Using the identities
+00 . +00 2 2
PO P (Ag— ’;”1) (A25)
k]_:—OO np=—0o0
+00 +0o0

i 2r 2

3 et = 3 Ty (Al— ”"2) (A26)
k2=700 Np=—00 k k



The physical projector and Chern—Simons theory 1051

one also has
A r 1 & . 2mny
(A O(ky, ko) Ap) = 2% g @tz g (Az - )
k1 /;——OO k ‘/E nl,an::foo k
2
x5 (Al— ’;”2> (A27)

However, in this form it is not yet possible to identify the different contributions of the
physical states in the form of modulus-squared terms. In order to achieve that aim, let us finally
compute the configuration-space matrix elements of the relevant operator, using the change of
basis(A1]|A,) above. One then obtains,

+00 R +00 +00 R
(Al > Utk ko)|AY) = / dAz (A1|lA2) (A2l Y Utk ko) AY)
k1,ko=—00 —o0 k1,kp=—00
2 % 27y RS 27 no
= — slA — —= 6| Ay — -2 . A28
O I D

Having thus obtained the configuration-space matrix elements of the zero-mode physical
projector operator, let us finally apply it onto any state of this sector of the quantized system.
Introducing the configuration-space wavefunction

) = f dA1 [A)(A4]Y) = f dA1|A1) ¥ (A1) V(A1) = (Aa|Y) (A29)
one readily derives,
(Al Y Uk k1) =/ dA} (A1] Y Ulky. ko)|AL) (AL ly)
kq,kp=—00 —00 kq,kp=—00
i 2 9 27'[112 e 27Tn2
- 7’12;& [w( p >n1=2008< ; )} (A30)

In particular, since physical states are to be invariant under the action of the physical projector
Zk1 k=00 U (ky, k), they should thus obey the following equation:

2% > [‘” (272’12) > 5( 27;{”2 )}wmo. (A31)

Nnp=—00 n1=—0oo

However, since this equation possegsdsstinct linearly independent solutions given by
2 = 2
(A1|r):w,(A1):7nC, 8<A1—%—Znn) r=012.. . k-1
n=—o00

(A32)

whereC, is some normalization factor, it is clear that there are exdctljstinct physical
stategr) for the quantized/ (1) Chern—Simons theory whose action is normalized with the
factor N, = hk/(4m). Moreover, the normalizatio@, for each of these configuration-space
wavefunctions of physical states is obtained from the obvious condition

+00 k—1
(Arl Y Uks k)| A)) (Aqlr)(r|AY) (A33)
=0

kl,k2=700

<
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The explicit resolution of this last constraint then finally provides the following configuration-
space wavefunctions for thkephysical stateg) (r =0,1,2,...,k — 1):

(Aq]r) =,/27” Y s (Al— % —27'[n>. (A34)

n=—0oQ

The coherent-state wavefunctiofrsz) of the same states are then easily obtained, using
the associated change of basis specified by the quarititi¢és), namely

(rlz) =f dAx (r|A1)(Aslz). (A35)

o0

An explicit calculation then finds

2 /4 1,2 1, i.2 r/k .
(rlz) = (%) g 21t e2-10° @ i) (—Ik /%Z’kt) (A36)

where the®-function with characteristics is defined by [23]

®|: Z ](Z|T) — i einr(n+a)2+2i7r(n+a)(z+ﬂ). (A37)
n=-—00

With respect to modular transformations, two useful identities for tkedenctions are

®|: r{)k :| (x|k(1:+1)) =ei7rr2/k®|: I"ék ] (x|k1:) only if kis even (A38)

o r/k _ E _1‘ i 1/2 qmtré/k = imrr' [k o l"//k _
o[ 0 Kx\ t>_k( ikT)Y? € ;ez CH (—tx|kt). (A39)
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